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Corona Virus Disease 2019 (COVID-19) caused by a novel 
coronavirus emerged in December 2019 (1–3) and has since 
become a global pandemic. COVID-19 virus is reported to be 
a new member of the betacoronavirus genus and is closely 
related to severe acute respiratory syndrome coronavirus 
(SARS-CoV) and to several bat coronaviruses (4). Compared 
to SARS-CoV and MERS-CoV, COVID-19 virus exhibits faster 
human-to-human transmission, thus leading to the WHO 
declaration of a world-wide public health emergency (1, 2). 

CoVs employ a multi-subunit replication/transcription 
machinery. A set of non-structural proteins (nsp) produced 
as cleavage products of the ORF1a and ORF1ab viral polypro-
teins (5) assemble to facilitate viral replication and transcrip-
tion. A key component, the RNA-dependent RNA polymerase 
(RdRp, also known as nsp12), catalyzes the synthesis of viral 
RNA and thus plays a central role in the replication and tran-
scription cycle of COVID-19 virus, possibly with the assis-
tance of nsp7 and nsp8 as co-factors (6). Nsp12 is therefore 
considered a primary target for nucleotide analog antiviral 
inhibitors such as remdesivir, which shows potential for the 
treatment of COVID-19 viral infections (7, 8). To inform drug 
design we have determined the structure of nsp12, in complex 
with its cofactors nsp7 and nsp8 by cryo-Electron Microscopy 
(Cryo-EM) using two different protocols, one in the absence 

of DTT (Dataset-1) and the other in the presence of DTT (Da-
taset-2). 

The bacterially expressed full-length COVID-19 virus 
nsp12 (residues S1-Q932) was incubated with nsp7 (residues 
S1-Q83) and nsp8 (residues A1-Q198), and the complex was 
then purified (fig. S1). Cryo-EM grids were prepared using 
this complex and preliminary screening revealed excellent 
particle density with good dispersion. After the collection and 
processing of 7,994 micrograph movies, we obtained a 2.9-Å 
resolution 3D reconstruction of an nsp12 monomer in com-
plex with one nsp7-nsp8 pair and an nsp8 monomer, as was 
previously observed for SARS-CoV (9). In addition to the 
nsp12-nsp7-nsp8 complex, we also observed single particle 
classes corresponding to the nsp12-nsp8 dimer, as well as in-
dividual nsp12 monomers, but these do not give atomic reso-
lution reconstructions (fig. S2). However, the nsp12-nsp7-
nsp8 complex reconstruction provides the structural infor-
mation for complete structural analysis. 

The structure of the COVID-19 virus nsp12 contains a 
“right hand” RdRp domain (residues S367-F920), and a 
nidovirus-unique N-terminal extension domain (residues 
D60-R249) that adopts a nidovirus RdRp-associated nucleo-
tidyltransferase (NiRAN) (10) architecture. The polymerase 
domain and NiRAN domain are connected by an interface 
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A novel coronavirus (COVID-19 virus) outbreak has caused a global pandemic resulting in tens of thousands 
of infections and thousands of deaths worldwide. The RNA-dependent RNA polymerase (RdRp, also named 
nsp12) is the central component of coronaviral replication/transcription machinery and appears to be a 
primary target for the antiviral drug, remdesivir. We report the cryo-EM structure of COVID-19 virus full-
length nsp12 in complex with cofactors nsp7 and nsp8 at 2.9-Å resolution. In addition to the conserved 
architecture of the polymerase core of the viral polymerase family, nsp12 possesses a newly identified β-
hairpin domain at its N terminus. A comparative analysis model shows how remdesivir binds to this 
polymerase. The structure provides a basis for the design of new antiviral therapeutics targeting viral RdRp. 
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domain (residues A250-R365) (Fig. 1, A and B). An additional 
N-terminal β-hairpin (D29-K50), built with the guidance of 
an unambiguous cryo-EM map (fig. S3A), inserts into the 
groove clamped by the NiRAN domain and the palm subdo-
main in the RdRp domain (Fig. 2). The nsp7-nsp8 pair shows 
a conserved structure similar to the SARS-CoV nsp7-nsp8 pair 
(9, 11). The orientation of the N-terminal helix of the separate 
nsp8 monomer bound to nsp12 is shifted compared with that 
in the nsp7-nsp8 pair (fig. S4A). The 13 additional amino acid 
residues resolved at the N-terminal of nsp8 show that the 
long “shaft” of its well-known “golf club” shape is bent (fig. 
S4B). 

The overall architecture of the COVID-19 virus nsp12-
nsp7-nsp8 complex is similar to that of SARS-CoV with an 
rmsd value of 0.82 for 1,078 Cɑ atoms (fig. S4C). However, 
there are key features that distinguish the two. The cryo-EM 
map allowed us to build the complete structure of COVID-19 
virus nsp12 including all residues except S1-D3 and G897-
D901. In contrast the first 116 residues were not resolved in 
SARS-CoV nsp12 (9). The portion of the NiRAN domain re-
solved in SARS-CoV-12 (residues 4 to 28 and 51 to 249) com-
prises eight helices with a five-stranded β-sheet at the N 
terminus. (9) (Fig. 2A). In the COVID-19 virus structure we 
additionally resolved residues A4-R118. These constitute a 
structural block with five anti-parallel β-strands and two hel-
ices. Residues N215-D218 form a β-strand in COVID-19 virus 
nsp12 whereas these residues are less ordered in SARS-CoV 
nsp12. This region make contact with the strand that includes 
residues V96-A100, thus contributing to the stabilization of 
its conformation. As a result, these four strands form a com-
pact semi β-barrel architecture. Therefore, we identify resi-
dues A4-T28 and Y69-R249 as the complete coronaviral 
NiRAN domain. With the resolution of N-terminal residues, 
we are also able to identify an N-terminal β-hairpin (D29 to 
K50, Figs. 1A and 2A). This β-hairpin inserts in the groove 
clamped by the NiRAN domain and the palm subdomain in 
the RdRp domain and forms a set of close contacts to stabilize 
the overall structure (Fig. 2B and fig. S5). Another point to 
note is that, we have observed C301-C306 and C487-C645 
form disulfide bonds in the absence of DTT (Dataset-1). How-
ever, in the presence of DTT (Dataset-2), chelated zinc ions 
are present and in the same location as that observe in SARS-
CoV (fig. S3B). 

The polymerase domain adopts the conserved architec-
ture of the viral polymerase family (12) and is composed of 
three subdomains; a fingers subdomain (residues L366-A581 
and K621-G679), a palm subdomain (residues T582-P620 and 
T680-Q815), and a thumb subdomain (residues H816-E920) 
(Fig. 1). The catalytic metal ions, which are observed in sev-
eral structures of viral polymerases that synthesize RNA (13, 
14) are not observed here in the absence of primer-template 
RNA and NTPs. 

The active site of the COVID-19 virus RdRp domain is 
formed by the conserved polymerase motifs A-G in the palm 
domain and configured like other RNA polymerases (Figs. 1A 
and 3A and fig. S6). Motif A comprising residues 611-
TPHLMGWDYPKCDRAM-626 contains the classic divalent-
cation-binding residue D618, which is conserved in most viral 
polymerases including HCV ns5b (residue D220) and po-
liovirus (PV) 3Dpol (residue D233) (13, 14) (Fig. 3, B and C) and 
Motif C (residues 753-FSMMILSDDAVVCFN-767) contains 
the catalytic residues (759-SDD-761) in the turn between two 
β-strands. These catalytic residues are also conserved in most 
viral RdRps, e.g., 317-GDD-319 in HCV ns5b and 327-GDD-
329 PV 3Dpol with the first residue being either serine or gly-
cine. 

In this structure, as in other RNA polymerases, the tem-
plate/primer entry, nucleoside triphosphate (NTP) entry, and 
nascent strand exit paths are positively charged and solvent-
accessible and converge in a central cavity where the RdRp 
motifs mediate template-directed RNA synthesis (Fig. 3D). 
The configurations of the template/primer entry paths, the 
nucleoside triphosphate (NTP) entry channel, and the nas-
cent strand exit path are similar to those described for SARS-
CoV and for other RNA polymerases such as HCV and PV pol-
ymerase (14) (Fig. 3, B and C). The NTP entry channel is 
formed by a set of hydrophilic residues, including K545, R553 
and R555 in motif F. The RNA template is expected to enter 
the active site composed of motifs A and C through a groove 
clamped by motif F and G. Motif E and the thumb subdomain 
support the primer strand. The product-template hybrid exits 
the active site through the RNA exit tunnel at the front side 
of the polymerase. 

Remdesivir, the single Sp isomer of the 2-ethylbutyl L-ala-
ninate phosphoramidate prodrug (15) (fig. S7), has been re-
ported to inhibit COVID-19 virus proliferation and therefore 
have clinical potential (7, 8). We will briefly discuss its possi-
ble binding and inhibition mechanism based on the results 
of this study. The efficacy of chain-terminating nucleotide an-
alogs requires viral RdRps to recognize and successfully in-
corporate the active form of the inhibitors into the growing 
RNA strand. Sofosbuvir (2’-F-2’-C-methyluridine monophos-
phate) is a prodrug which targets HCV ns5b and has been 
approved for the treatment of chronic HCV infection (16). It 
acts by binding to the catalytic site of HCV ns5b polymerase 
(12,16). Given that remdesivir and sofosbuvir are both nucle-
otide analogs and the structural conservation of the catalytic 
site between COVID-19 virus nsp12 and HCV ns5b polymer-
ase (13, 16) (fig. S7), we modeled remdesivir diphosphate 
binding to COVID-19 virus nsp12 based on superposition with 
sofosbuvir bound to HCV ns5b (Fig. 4A and fig. S4D). Overall, 
we found that the nsp12 of covid-19 virus has the highest sim-
ilarity with the Apo state of ns5b. Given the conformational 
changes of ns5b in apo/elongation/inhibited states, it appears 
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catalytic residues D760, D761 and the classic D618 will un-
dergo a conformational change to coordinate the divalent cat-
ions (Fig. 4B). The latter will anchor the phosphate group of 
the incoming nucleotide or inhibitors together with the allo-
steric R555 in motif F (Fig. 4C). In the structures of HCV ns5b 
elongation complex or its complex with pp-sofosbuvir, a key 
feature is that the incorporated pp-sofosbuvir interacts with 
N291 (equivalent to N691 in COVID-19 virus) but, due to a 
fluorine substitution on its sugar moiety, is not capable to 
joint into the hydrogen bonding network with S282 and D225 
(Fig. 4D), which is necessary to stabilize the incoming natural 
nucleotide (13). However, remdesivir keeps an intact ribose 
group, so it may be able to utilize this hydrogen bonds net-
work like a native substrate. In addition, T680 in COVID-19 
virus nsp12 is also likely to form hydrogen bonds with the 2’ 
hydroxyl of Remdesivir and of course with incoming natural 
NTP (Fig. 4D). Moreover, the hydrophobic side chain of V557 
in motif F is likely to stack with and stabilize the +1 template 
RNA uridine base to base pair with the incoming triphos-
phate remdesivir (ppp-remdesivir) (Fig. 4E). 

The rapid global spread of COVID-19 virus has empha-
sized the need for the development of new coronavirus vac-
cines and therapeutics. The viral polymerase nsp12 looks an 
excellent target for new therapeutics, especially given that 
lead inhibitors already exist in the form of compounds such 
as Remdesivir. Considering the structural similarity of nucle-
oside analogs, the binding mode and inhibition mechanism 
discussed here may also be applicable to other such kind 
drugs or drug candidates include Favipiravir, which proves 
effective in clinical trials (17). This target, in addition to other 
promising drug targets such as the main protease, could sup-
port the development of a cocktail of anti-coronavirus treat-
ments that potentially can be used for the discovery of broad-
spectrum antivirals. 
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Fig. 1. Structure of COVID-19 virus nsp12-nsp7-nsp8 complex. (A) 
Domain organization of COVID-19 virus nsp12. The interdomain borders are 
labeled with residue numbers. The N-terminal portion with no cryo-EM map 
density and the C-terminal residues that cannot be observed in the map are 
not included in the assignment. The polymerase motifs are colored as: motif 
A, yellow; motif B, red; motif C, green; motif D, violet; motif E, cyan; motif F, 
blue; and motif G, light brown. (B) Ribbon diagram of COVID-19 virus nsp12 
polypeptide chain in three perpendicular views. Domains are colored the 
same as in (A). The individual nsp8 (nsp8-1) bound to nsp12 and that in the 
nsp7-nsp8 pair (nsp8-2) are in grey; the nsp7 is in pink. The bottom left 
panel shows an overview of the cryo-EM reconstruction of the nsp12-nsp7-
nsp8 complex. 
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Fig. 2. Structure of N-terminal NiRAN domain and β-hairpin. (A) Overall 
structure of the N-terminal NiRAN domain and β-hairpin of COVID-19 virus 
nsp12. The N-terminal NiRAN domain and β-hairpin of COVID-19 virus nsp12 
are shown as yellow and cyan cartoons, while the other regions of COVID-
19 virus nsp12 are shown as a molecular surface with the same color 
scheme used in Fig. 1. The NiRAN domain of SARS-CoV nsp12 is 
superimposed to its counterpart in COVID-19 virus nsp12 and is shown in 
purple. (B) Key interactions between the β-hairpin and other domains. The 
β-hairpin is shown as a cyan tube with its key residues in stick mode. These 
have the closest contacts with other domains of COVID-19 virus nsp12. The 
interacting residues in the palm and fingers subdomain of the RdRp domain, 
and the NiRAN domain, are identified by the labels. 
 

on A
pril 11, 2020

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://www.sciencemag.org/
http://science.sciencemag.org/


First release: 10 April 2020  www.sciencemag.org  (Page numbers not final at time of first release) 7 
 

 
 

  

Fig. 3. The RdRp core region. (A to C) Structural comparison of COVID-19 
virus nsp12 (A), HCV ns5b (PDB ID: 4WTG) (13) (B), and PV 3Dpol (PDB ID: 
3OLB) (14) (C). The three structures are displayed in the same orientation. 
The polymerase motifs (A-G) have the same color scheme used in Fig. 1A. 
(D) The template entry, NTP entry, product hybrid exits paths in COVID-19 
virus nsp12 are labeled in slate, deep teal and orange colors. Two catalytic 
manganese ions (black spheres), pp-sofosbuvir (dark green spheres for 
carbon atoms) and primer template (orange) from the structure of HCV 
ns5b in complex pp-sofosbuvir (PDB ID: 4WTG) (13) are superposed to 
COVID-19 virus nsp12 to indicate the catalytic site and nucleotide binding 
position. 
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Fig. 4. Incorporation model of remdesivir in COVID-19 virus nsp12. (A) 
The polymerase motifs are colored as in Fig. 3. Superposition of the 
structure of HCV ns5b in complex with pp-sofosbuvir (PDB ID: 4WTG) (13) 
with COVID-19 virus nsp12 shows the possible positions of the two catalytic 
ions (brown spheres), the priming nucleotide (U 0), template strand, and 
the incoming pp-remdesivir in nsp12. (B to E) Structure comparison of HCV 
Apo ns5b or its complex with UDP and pp-sofosbuvir with the COVID-19 
virus nsp12. 
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