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SUMMARY
Estimating viral timescales is fundamental in understanding the evolutionary biology of viruses. Molecular
clocks are widely used to reveal the recent evolutionary histories of viruses but may severely underestimate
their longer-term origins because of the inverse correlation between inferred rates of evolution and the time-
scale of their measurement. Here, we provide a predictive mechanistic model that readily explains the rate
decay phenomenon over a wide range of timescales and recapitulates the ubiquitous power-law rate decay
with a slope of�0.65. We show that standard substitution models fail to correctly estimate divergence times
once the most rapidly evolving sites saturate, typically after hundreds of years in RNA viruses and thousands
of years in DNA viruses. Our model successfully recreates the observed pattern of decay and explains the
evolutionary processes behind the time-dependent rate phenomenon. We then apply our model to re-esti-
mate the date of diversification of genotypes of hepatitis C virus to 423,000 (95% highest posterior density
[HPD]: 394,000–454,000) years before present, a time preceding the dispersal of modern humans out of
Africa, and show that the most recent common ancestor of sarbecoviruses dates back to 21,000 (95%
HPD: 19,000–22,000) years ago, nearly thirty times older than previous estimates. This creates a new
perspective for our understanding of the origins of these viruses and also suggests that a substantial revision
of evolutionary timescales of other viruses can be similarly achieved.
INTRODUCTION

The timescale over which viruses evolve and how this process is

connected to host adaptation has been an area of considerable

research and methodological progress in recent decades.

Mammalian RNA viruses, in particular, exhibit extraordinarily

rapid genomic change,1–3 and analyses of their genetic variation

have enabled detailed reconstruction of the emergence of

viruses such as HIV-1,4 hepatitis C virus,5 and influenza A virus.6

RNA viruses display evolutionary change over short timescales

(weeks to months) and can alter a substantial part of their ge-

nomes following a host switch.7–10 Well-characterized examples

for both RNA and DNA viruses include the emergence of HIV-1 in

humans from a chimpanzee reservoir4,11 and the adaptation of

myxomatosis in rabbits.12

These rapid rates of virus sequence change stand in striking

contrast with evidence for extreme conservation of virus genome

sequences over long periods of evolution and at higher taxo-

nomic levels. Inferred short-term rates of virus sequence change
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should create completely unrecognizable genome sequences if

they were naively extrapolated over thousands, or even hun-

dreds, of years, yet endogenous viral elements (EVEs) that inte-

grated into host genomes throughout mammalian evolution are

recognizably similar to contemporary genera and families of

Bornaviridae, Parvoviridae, and Circoviridae, among many other

examples.13–15 This observation is complemented by evidence

from studies of virus/host co-evolution16–18 and, more recently,

from analyses of viruses recovered from ancient DNA and RNA

in archaeological remains,19–22 which indicate a remarkable de-

gree of conservation in viral genome sequences and their inter-

relationships at genus and family levels. This dichotomy has

been attributed to the time-dependent rate phenomenon

(TDRP), which is the observation that apparent rates of evolution

are dependent on timescales of measurement.23,24

The TDRPhasbeen explained by processes such as sequence

site saturation, purifying selection, short-term changes in

selection pressure, and potential errors in the estimation of

short-term substitution rates.23–26 Empirically, substitution rates
ovember 8, 2021 ª 2021 The Authors. Published by Elsevier Inc. 1
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across RNA and DNA viruses show a striking linear relationship

between log-transformed rates and timescales of measurement,

despite the large variation among viruses in their initial short-term

substitution rates.25 The regression gradients of observation time

against estimated evolutionary rates are consistently around

�0.65 for all virus groups in which long-term substitution rates

can be calculated or inferred. Crucially, the observation of a uni-

versal power-law rate decay in nearly all viruses suggests that

there is a common underlying evolutionary process. However,

we donot have a systematic biological explanation for this obser-

vation. Various factors have been invoked to account for these

patterns, including purifying selection, site saturation, and

sequencing errors, though none of these alone have been shown

to generate a power-law rate decay.24,26

One proposal is that the primary driver of virus evolution over

long evolutionary timescales is host adaptation, in which virus

sequence change is severely curtailed by stringent fitness con-

straints.27 Viruses exist within a tightly constraining host niche

to which they rapidly adapt; paradoxically, their high mutation

rates, large population sizes, and consequent ability to adapt

rapidly serve to restrict their long-term diversification and sus-

tained sequence change, rendering them evolutionary ‘‘pris-

oners of war’’ (PoWs). This idea posits that, over longer time-

scales, rates of viral evolution will be bound by the rate of

evolution of their hosts.27 However, the exact timescales over

which these various evolutionary events occur, as well as the

extent to which they contribute to changing virus sequences

over time, is still largely unknown.

Here, we develop a newmodel of the longer-term evolutionary

rate dynamics of viruses that explains the empirical observation

of a universal power-law rate decay across different virus

groups. Our model is biologically motivated and based on a

minimal number of assumptions. We show how the

rapid genetic saturation of some sites, together with the host

constraint on other sites, can create a time-dependent rate dy-

namic whereby sites can partially or fully saturate according to

how fast they accumulate substitutions over time. This process

occurs chronologically from sites evolving the fastest to those

that evolve epistatically, to those that evolve at the hosts’

substitution rate. This model reproduces empirically observed

TDRP patterns, and the inflection points where time-dependent

rate changes become manifest due to site saturation. We

demonstrate that the model predictions are robust to intrinsic

and marked differences in substitution rates among different vi-

rus groups, and to assumptions about the relative proportion of

sites evolving at different rates.

RESULTS

Power-law rate decay can emerge due to site saturation
First, we show how a time-dependent rate effect emerges when

estimating the rate of sequence divergence using a standard

evolutionary model. Suppose that a sequence has diverged

from its ancestor for t years under a constant and uniform substi-

tution rate per site per year (SSY), m. The proportion of pairwise

differences between the derived sequence and its ancestor, pðtÞ,
initially accumulates linearly (i.e., pðtÞzmt) until it reaches a point

where every new substitution occurs in the background of a site

that has already changed at least once; this limit, hereafter called
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the saturation frequency, a, occurs at time t�za=m (Equation 1).

As the derived sequence continues to diverge beyond the satu-

ration point, t�, the observed proportion of pairwise differences,bp, remains effectively unchanged. If there are no intermediate

samples from the derived sequence before it reaches the satura-

tion point, any conventional substitution model is not able to

correctly count the number substitutions and, therefore, under-

estimates the true rate. Thus, without enough temporal

information from the derived sequence before reaching the

saturation point, using any conventional substitution model,

the inferred genetic distance (i.e., the expected number of sub-

stitutions per site), bd, remains constant and the estimated sub-

stitution rate, bm, declines as the divergence time increases,bmf1=t, which manifests itself with a power-law rate decay with

slope �1 on a log-transformed plot.

Conundrum of rate calibrations
As an illustrative example, we consider how time-dependent rate

effects pose a challenge to the estimation of the substitution rate

of foamy viruses (FVs) over time. FVs are a group of retroviruses

in the subfamily of Spumaretrovirinae that have been isolated

from a broad range of mammals.28 By tracking the evolution of

FVs in a population of African green monkeys over short time-

scales (i.e., less than a decade), it was estimated that their evolu-

tionary rate is approximately 3:8310�4 SSY.29 By contrast, using

the very long and stable cospeciation history of FVs with their

hosts, which goes back more than a hundred million years,17

their long-term rate of evolution has been estimated to be nearly

1:7310�8 SSY,30 almost four orders of magnitude slower than

their short-term rates.

If we calibrate the amount of divergence (i.e., the expected

number of substitutions per site) between FV sequences over

time using their short-term evolutionary rate estimates, then

nearly all sites in the virus genome should have acquired a sub-

stitution (i.e., saturation point) after �2,500 years. Beyond this

time, any standard model of sequence evolution (substitution

model) underestimates the amount of sequence divergence

and, thus, the inferred substitution rates, bm, drop sharply as

the time span of observation, t, increases such that the slope

of the rate decay on a log-transformed plot is �1 (Figure 1A).

Even though there is a sharp decline in the inferred substitution

rate of FVs over time due to site saturation, it still overestimates

their true long-term evolutionary rate based on cospeciation his-

tory after a hundred million years (Figure 1A, purple line). One

way to resolve this is by dividing the sites in the FV genome

into two ‘‘rate groups,’’ such that a fraction of sites, m1, evolve

at a fast rate (say, m1 = 1310�3 SSY), and the remaining sites,

m2 = 1� m1, evolve at a slower rate (say, m2 = 1:7310�8 SSY).

The allocated fraction, m1, can be specified such that the

mean substitution rate, CmD = m1m1 +m2m2, is equal to the

observed short-term evolutionary rate of FV, m
_
= 3:8310�4

SSY. Therefore, a standard substitution model can reliably esti-

mate short-term rates up to and before the saturation of rapidly

evolving sites, m1, beyond which time the number of substitu-

tions at those sites is underestimated and a time-dependent

rate decay emerges. However, over longer timescales, new sub-

stitutions at the slowly evolving sites, m2, accumulate such that

the inferred rate, bm, gradually plateaus at a rate which corre-

sponds to the long-term substitution rate of FV, m2. This new



Figure 1. Time-dependent rate phenomenon in foamy viruses (FVs) under different evolutionary models

(A and B) How time-dependent rate phenomenon emerge (A) using a standard evolutionary model with a single or double rate group and (B) using the PoWmodel

with several rate groups.

(A) Distribution of the fraction of sites per rate group when (top) there is a single rate group (purple), i.e., all sites evolve at the same substitution rate, or there are

two rate groups (blue) such that a fraction,m1 = 0:38, are evolving at a faster rate (10�3SSY) compared to the remaining sites,m2 = 1�m1, which are evolving

more slowly (10�6SSY).

(B) Top: there areM rate groups that are equally spaced on a log-scale, with a common ratio, DM, from the slowest rate (group 1), mmin = 10�9SSY, to the fastest

(group M), mmax. According to the PoW model, a fraction of sites, mi, belonging to rate group i˛f1; 2;.;Mg, evolving at rate mi, is an exponentially distributed

number with exponent parameter l such that l is less (greater) than zero when the majority (minority) of sites evolve at the host substitution rate. (A, bottom)

Schematic plot of the evolutionary rate trajectory of FVs over time, assuming that their rate is inferred using a standard substitution model with a single rate group

that is calibrated based on their short-term substitution rates (circular nodes on the tree) and two rate groups based on their mean and long-term substitution rates

(diamond-shaped nodes on the tree). (B, bottom) Evolutionary rate trajectory of viruses over time under the PoW model, whereby the short-term rates can be

inferred until when the fraction of sites belonging to the fastest rate group reaches saturation (the inflection point in the curve), beyond which point a time-

dependent rate decay emerges. The virus substitution rates can be reliably inferred across all timescales without a need for any rate calibrations and the pattern of

rate decay is aligned with the empirical slope of �0.65.25

Related to STAR Methods. See also Figure S1.
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plateau will only last until the proportion of slow-evolving sites

also saturate, which takes more than 100 million years to occur,

beyond which time the entire genome is saturated and a power-

law rate decay with slope �1 emerges (Figure 1A, cyan line).

The PoW model of virus evolution
Even though an evolutionary model for the FV substitution rate

based on two rate groups can recover its inferred short-term

and long-term rates, it still fails to accurately predict the

observed substitution rates over intermediate timescales. Aiew-

sakun andKatzourakis31made the empirical observation that the

time-dependent rate of FVs follows a power-law decay with a

slope of �0.65. More importantly, they showed that not only

FVs but all other virus groups for which a correlation could be

performed follow a similar universal power-law rate decay with
the same slope,25 suggesting a common underlying process

involved in rate decay.

The PoWmodel of evolution is based on the principle that a vi-

rus sequence is divided into M substitution rate groups, ranging

from sites evolving very rapidly at rate mmax, similar to virus mu-

tation rates, to sites evolving more slowly due to epistatic and

compensatory substitutions, all the way to sites evolving at the

host substitution rate, mmin. The fraction of sites, mi, allocated

to each rate group, i, is an exponentially distributed number,

mi = Celi, where C is the normalization factor and l is the expo-

nent coefficient that determines whether the majority of sites are

slowly (l < 0) or rapidly (l > 0) evolving. As the virus sequence

evolves, sites belonging to the fastest rate group saturate first,

typically after t � 1=mmax years, followed by the saturation of

sites in the next fastest rate group, which takes longer to occur,
Current Biology 31, 1–8, November 8, 2021 3



Figure 2. Estimated time-dependent rate curves for each virus group according to the PoW model

A total of 389 viral rate estimates (colored circles representing various phylogenetic methods used for rate estimation) was collected from more than

130 publications: 23 estimates for Baltimore group I, 32 for group II, 123 for group IV, 106 for group V, 85 for group VI, and 20 for group VII. The insets

show the proportion of sites in each rate group. Every rate group, including the ones with the smallest proportion, are well-represented in the genome, i.e.,

mminimum[10�4 > 1=L, where L is the typical genome size of an RNA virus. The red lines show the best fit and shaded area the 95% confidence intervals for each

virus group (DM = 1:58and aM = a = 3=4).

See also Figure S2.

ll
OPEN ACCESS

Please cite this article in press as: Ghafari et al., A mechanistic evolutionary model explains the time-dependent pattern of substitution rates in viruses,
Current Biology (2021), https://doi.org/10.1016/j.cub.2021.08.020

Article
and so on. Depending on how divergent a virus sequence is with

respect to its ancestor, sites that belong to more slowly evolving

rate groups may also reach partial or complete saturation

(Equation 4). Thus, at any given time span, the virus explores

only a subset of its sites (i.e., is trapped inside a ‘‘prison cell’’

in sequence space) and does not have access to explore substi-

tutions at every position in its genome. This chronological satu-

ration of sites gives rise to a power-law decay in the inferred

substitution rate over time with a slope of �0.65 on a log-trans-

formed graph, supporting the empirical observation by Aiewsa-

kun and Katzourakis (Figure 1B).25

Building upon a collection of virus evolutionary rate estimates

from more than 130 publications,25 we use 396 nucleotide sub-

stitution rate estimates across six major viral groups to find the

line of best fit between the PoW model of time-dependent sub-

stitution rates and the evolutionary rate estimates for each viral

group (i.e., the data that are collected from the literature) using

the geometric least-squares method.32 This enables us to esti-

mate a mean and maximum substitution rate (i.e., CmD andmmax)

for each virus group.

Our results show that upon the saturation of the fastest-

evolving sites a power-law rate decay emerges that is in agree-

ment with the empirical slope �0.65 (95% HPD: �0.72, �0.52)

across all viral groups (Figure 2). The inflection point in the rate

curve, which signals the saturation of rapidly evolving sites,

occurs typically after 100 to 1,000 years in most RNA and DNA

viruses. We further find that in double-stranded DNA (dsDNA) vi-

ruses, the short-term substitution rate (i.e., the flat part of the

time-dependent rate curve, CmD =
PM
i = 1

mimi) and the fastest-
4 Current Biology 31, 1–8, November 8, 2021
evolving rate group, mmax, have the lowest rates compared to

all other virus groups. Together with reverse-transcribing DNA

(RT-DNA) and single-stranded DNA (ssDNA) viruses, dsDNA

viruses typically have 1 to 2 orders of magnitude slower short-

term substitution rates and fastest-evolving rate groups

compared to RNA viruses (Table 1). Conversely, these rates

are very similar among the positive-strand RNA (+ssRNA) vi-

ruses, negative-strand RNA (–ssRNA) viruses, and reverse-

transcribing RNA (RT-RNA) viruses. We find that the estimated

rate at the fastest-evolving sites in RNA viruses is

mmaxz4310�2SSY, which is very close to their estimated muta-

tion rates. Therefore, these sites can begin to saturate after only

a few decades or hundreds of years. On the other hand, we find

that a large proportion of slow-evolving sites are not saturated

over the span of more than 1 billion years and that the rate curve

in none of the virus groups has completely plateaued at the host

substitution rate (Figure 2).

To ensure that our model predictions are not biased toward a

particular virus family with more evolutionary rate estimates

(i.e., more data points to fit to the PoW model in Equation 4),

we remove all the short-term rate estimates (i.e., any rate that

is measured over a time span of less than 100 years) within

each viral group except for one virus family or genus to recali-

brate themean substitution rates (Table S1).Wefind that, despite

the broad variation in short-term rates across all viral groups, the

shape of the sigmoid curve, exponent coefficient l, and mmaxis

robust to such changes and is not an artifact of systematic biases

in selecting rate estimates from a particular virus family. We

note that, in group VI, the large difference in evolutionary rates

between Lentivirus and Deltaretrovirus families results in a



Table 1. Estimated short-term and maximum substitution rate

SSY according to the PoW model

Viral

group Type of virus

Short-term

substitution rate, CmD
Fastest rate

group, mmax

I dsDNA virus 2ð0:3 � 16Þ310�5 3ð0:6 � 10Þ310�3

II ssDNA virus 3ð1 � 6Þ310�4 2ð1 � 3Þ310�2

IV (+)ssRNA virus 2ð1 � 4Þ310�3 4ð3 � 6Þ310�2

V (�)ssRNA virus 1ð0:7 � 3Þ310�3 4ð3 � 6Þ310�2

VI RT-RNA virus 1ð0:7 � 3Þ310�3 4ð3 � 6Þ310�2

VII RT-DNA virus 5ð1 � 20Þ310�5 4ð2 � 10Þ310�3

The inferred short-term substitution rate and the rate of substitution at the

fastest-evolving rate group across six virus groups. Numbers in paren-

theses show the 95% confidence interval for an estimated paramater.

See also Table S1.
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noticeably different pattern of rate decay over short timescales

(Figure S2) and the long-term rates aremore alignedwith the pre-

dictions based on the Deltaretrovirus recalibration. The short-

term substitution rates of Lentivirus families are 1 to 2 orders of

magnitude higher than the Deltaretrovirus family. The latter

evolves at rates similar to RT-DNA viruses. We also see that a

larger fraction of sites in DNA viruses tend to evolve at rates

closer to the host substitution rates (i.e., the majority of sites in

the virus sequence are slow evolving) compared to RNA viruses,

which largely have an equal proportion of sites in every rate group

(i.e., the exponent coefficient l is close to zero). We also carried

out a similar sensitivity analysis at the level of virus genera,

which further confirms that the rate curves predicted by the

PoW model remain accurate at this level and are not artifacts of

measured rates at the level of Baltimore groups (Figure S2).

The formulation of the PoW model allows for a one-to-one

map between the relative genetic distance of any given pair

of sequences and divergence time. Therefore, by estimating

the genetic distance between sequences using some distance

metric, we can convert them into divergence time (Equations 5

and 6). Given that the shape of the rate curve is robust to

changes in the short-term substitution rates, CmD, across virus

families and genera, the transformation from relative genetic

distance to time can be applied to estimate the divergence

times among any given virus sequences. To test the validity

of this approach in recovering known divergence times, we

re-estimate the time to the most recent common ancestor of

various species of FVs and compare the results with estimates

based on host calibrations.31 Because of the long history of co-

speciation, the virus phylogenies have the same topology as

the host. Therefore, there can be a one-to-one comparison be-

tween estimated divergence times based on their phylogenies.

First, by fixing the rate of substitution at the fastest-evolving

sites to those inferred for RNA viruses (Table 1) and using

known long-term substitution rate estimates of FVs from the

literature to find the line of best fit for the PoW rate curve, we

estimate the FV short-term substitution rate to be 6.1 3 10�6

(95% HPD: 5.4 3 10�6 – 7.0 3 10�6), which is in agreement

with previous estimates.33 We then construct a distance tree

using the Jukes-Cantor (JC69) or Hasegawa, Kishino, and

Yano (HKY85) model and convert branch lengths into diver-

gence time using the PoW transformation (STAR Methods).
The result confirms that we can reliably recover true divergence

times between most samples (some are different by up to a

factor of 2) without calibrating the dates of any nodes on the

tree (Figures 3A and S3A).

To further illustrate the radical effect of applying the PoW

model to virus evolutionary timescales, we analyze a heterochro-

nous dataset of complete hepatitis C virus (HCV) genome se-

quences that represent its component genotypes and subtypes

(Figure 3B). First, using a standard HKY+G substitution model,

we find that the mean substitution rate of HCV is 8.3 3 10�4

(95%HPD: 7.33 10�4 – 9.53 10�4) SSY. Then, by using the pre-

dicted value of mmax for viruses that belong to group IV,

mmax = 3:65310�2 (Table 1), and the inferred median short-term

substitution rate CmD = 8:3310�4, we can construct a PoW-trans-

formed time tree for HCV (STARMethods). We find that there is a

clear separation of timescales for the diversification of HCV var-

iants within genotypes (�50–2,000 years), among subtypes

(�1,000–80,000 years), and among genotypes (�80,000–

200,000 years) with an estimated time to the most recent

common ancestor (TMRCA) of 423,000 (95% HPD: 394,000–

454,000) years before present (BP) for HCV (Figure 3B). While

the predicted divergence times for some of the within-genotype

variants using the PoWmodel are similar to those obtained using

a standard HKY+G substitution model, the latter estimates the

TMRCA of HCV to be only 940 (95% HPD: 820–1,100) years

BP with no clear separation of timescales for among-genotype

diversifications. These results contrast with estimates of 500 to

2,000 years of genotype diversification by simple extrapolation

from short term rates, while among-subtype divergence times

of 1,000 to 80,000 years are up to 50 times higher than the 300

to 500 years estimated in previous molecular epidemiological

analysis.35–37 The revised, very early evolutionary origin of HCV

genotypes (394,000 years, 454,000 years 95% HPD) predicted

by our model is striking. While these early dates still fit with pro-

posed hypotheses for multiple and potentially relatively recent

zoonotic sources of HCV in humans, associated with different

genotypes,38,39 the existence of a common ancestor of HCV

before human migration of Africa (150,000 BP) support an alter-

native scenario where HCV diversified within anatomically mod-

ern humans. HCV genotypes may have arisen from geographical

separation in Africa (genotypes 1, 2, 4, 5, and 7) and migrational

separation of human populations migrating out of Africa into Asia

(genotypes 3, 6, and 8).

We also carried out a similar analysis to investigate the origins

of the SARS-CoV-2 sarbecovirus lineage (Figure 3C). By finding

themean substitution rate of the sarbecovirus lineage to be 5.63

10�4 (95% HPD: 3.5 3 10�4 – 7.6 3 10�4) using a standard

HKY+G substitution model (STAR Methods), we find that while

the PoW-transformed phylogeny recovers the previous esti-

mates for SARS-CoV and SARS-CoV-2 diversification from their

most closely related bat virus over short timescales (i.e., less

than hundreds of years BP), it extends the TMRCA back to

21,000 (95% HPD: 19,000–22,000) years BP, nearly 30 times

older than previous estimates.34 The 95% HPD represents the

uncertainty that may arise from the choice of substitution model,

inferred genetic distance between each pair of sequences, and

the inferred tree topology. Our results indicate that humanity

may have been exposed to these viruses since the Paleolithic

period if they had come into contact with their natural hosts.
Current Biology 31, 1–8, November 8, 2021 5



Figure 3. The PoW-transformed time-calibrated phylogenies and estimated divergence times for FV, HCV, and sarbecovirus datasets

(A) FV phylogeny and estimated divergence times for labeled internal nodes using the PoW model with HKY (red) and JC69 (blue) substitution models and host

calibrations (black).31

(B) HCV (including all 8 genotypes) phylogeny and estimated divergence times for variants within genotypes, subtypes, and between genotypes using the PoW

model and a strict clock with HKY+G substitution model (black).

(C) SARS-CoV-2 sarbecovirus phylogeny based on the non-recombinant alignment 3 (NRA3)34 constructed using the PoW model and a standard HKY+G

substitution model with uncorrelated relaxed clock (black). Gray horizontal lines on the phylogeny and vertical lines on the graphs represent the 95% HPD.

Related to STAR Methods and Figure S3.
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Also, our date estimates of the origin of the sarbecovirus lineage

are in remarkable concordance with signatures of a selection of

human genomic datasets that indicate an arms race with

corona-like viruses dating back to 25,000 years BP,40 providing

an external comparator for our methodology. We also note that,

even if the sarbecovirus origins were estimated to be more

recent, the pattern of selection could still be attributed to a

deeper coronavirus ancestry.

To test the impact of changing the substitution model on the

estimated divergence times, we compared our analyses on

FV, HCV, and sarbecovirus datasets using both the JC69

and HKY substitution models and find minimal differences be-

tween the estimates (Figures 3 and S3). To further assess the

impact of uncertainty in the clock model on estimated diver-

gence times, we allow the short-term rates and mmax for

each virus dataset to vary in accordance with its inferred pos-

terior mean rate distribution and the geometric least-square

cost function, respectively (STAR Methods). Our results
6 Current Biology 31, 1–8, November 8, 2021
showed that, while the median TMRCA estimates for the three

datasets are very similar to results in Figure 3, the confidence

intervals are much wider. We find that the TMRCA for the HCV

dataset is 427,000 (95% HPD: 153,000–826,000) years BP

and for the sarbecovirus dataset is 25,000 (95% HPD:

5,000–73,000) years BP (Figure S3). We note that the higher

level of uncertainty in the estimated divergence times due to

the clock model is somewhat artificial and can vary widely de-

pending on the choice of the clock model (e.g., strict/relaxed

clock) and rates prior. For instance, in the sarbecovirus data-

set, because the alignments are from diverse viral populations

with deep evolutionary histories, time-dependent rate effects

become manifest over the span of 10 to 50 years of rate mea-

surement. As a result, using an uncorrelated relaxed clock

that allows each branch of the phylogeny to have its own

evolutionary rate creates a very wide variation in the inferred

mean substitution rate while the sigmoid shape of the time-

dependent rate decay in the PoW model makes a very specific
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assumption about how the substitution rate varies as the time-

span of rate measurement increases. Therefore, by allowing

the short-term rate to vary in accordance with the posterior

rate distribution, we can generate unwanted uncertainty in

the PoW-transformed estimated divergence times.

DISCUSSION

The PoW model creates an over-arching evolutionary frame-

work that can reconcile and incorporate timescales derived

from co-evolutionary and ancient DNA studies. Further sub-

stantive re-evaluations of timescales of other RNA and DNA

viruses using this approach may provide new insights into

their origins and evolutionary dynamics. We show how these

can alter paradigms about how we think that certain viruses

evolved. The application of the PoW model will place ances-

tors of divergent virus sequences much further back into the

past than conventional reconstructions. We obtained a good

fit between the pattern of modeled and observed substitution

rate decay gradients over time using only a minimal number of

assumptions about mutational fitness effects and proportion

of sites evolving at a particular rate. We showed that our

method is robust to substantial differences in substitution

rates among viral groups. By finding the short-term substitu-

tion rate (the flat part of the modeled rate decay) and the value

of the fastest-evolving rate group (which sets the inflection

point of the curve), the PoW model can reconstruct corrected

substitution rates for virus genotypes with increasingly diver-

gent nucleotide sequences.

While the empirical observation of the power-law rate decay

has enabled the reconstruction of the timescales of association

between some viruses and their hosts,31 these approaches are

based on using a top-down description of rate decay, which

lacks an underlying biological basis. Furthermore, they require

the use of multiple internal calibration points in order to esti-

mate timescales. The PoW model does not require such cali-

brations and does not exhibit substantial rate decay over short

timescales (i.e., the flat part of the rate curve) before the fast-

est-evolving sites have saturated. This enables reliable infer-

ence of divergence time over shallow timescales; over such

timescales a naive extrapolation of substitution rates using

the empirical power-law can produce inaccurate divergence

date estimations.

Our mechanistic model allows for a fraction of sites to evolve at

different ratesdue toepistasisornucleotidebiases, requiresamin-

imal number of assumptions, and needs no additional calibration

information. This provides, for the first time, a bottom-up model

that can account for the empirical observation of the TDRP. The

model is compatible with the notion of host-driven constraints on

virus evolution,27 which represents a special case of the PoW

model, but it does not require the constraints to be host driven

and is generalizable. Furthermore, we find the substitution rate at

the fastest-evolving rate groups in RNA viruses to be 1 to 2 orders

of magnitude faster than DNA viruses. This provides RNA viruses

with an access to awider range of sites that can evolve at interme-

diate substitution rates which, in turn, provides them with more

possibilities for epistatic substitutions.We know that this is indeed

the case for most RNA viruses due to their compact genomes,

overlapping reading frames, and secondary structures.
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Materials availability
The list of all used resources is provided in the Key resources table.

Data and code availability
All datasets and codes required to reproduce the analyses are available at https://github.com/mg878/PoW_model.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All the sources of sequence alignments and bioinformatic data used in the analysis are provided in the Key resources table.

Sarbecovirus dataset
To minimize the effect of recombination when inferring time-tree phylogenies of Sarbecovirus, we use the putative recombination-

free alignment from Boni et al.34 with 66 sequences (also called the non-recombinant alignment 3, NRA3).

Hepatitis C virus dataset
All coding complete genome sequences of HCV were downloaded from GenBank in May 2019. Those with annotated sample dates

were then quality tested (completeness, lack of internal gaps, stop codons, ambiguous bases), and then filtered for sequence

similarity to each other. A threshold of 0.2 nucleotide sequence divergence (over the whole genome) was used to extract single

examples of each subtype that were dated and supplemented these with 17 further sequences that were the most divergent

examples of the same subtype (threshold of 17%). The set was further supplemented with examples of genotypes 1a, 1b and 3a,

and references sequences of all subtypes to produce a final alignment of 120 sequences.

Foamy virus dataset
We use the manually-curated pol nucleotide (3,351 nucleotides) alignments of 14 extant FVs from Aiewsakun and Katzourakis.25 The

dataset was examined for potential recombination by Aiewsakun and Katzourakis and no evidence for significant recombination was

found. Because the viral tree topology is closely aligned with the host phylogeny, we assumed a long history of cospeciation for these
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viruses and matched the viral tree topology to that of the hosts (enforced certain taxon sets to be monophyletic in the BEAST

analysis).

R package for the construction of PoW-transformed phylogenies
For heterochronous datasets (i.e., sequence data isolated at different time points), we first infer the mean rate using standard sub-

stitution models. We then construct an ultrametric distance tree using either the JC69 or HKY85 substitution models. To convert the

distance trees into a PoW-transformed time tree, we first subsample distance trees that are produced by BEAST and convert each of

them to time trees using the PoWmodel (see Equations 5 and 6) assuming that the short-term rate (i.e., flat part of the sigmoid curve)

is equal to the median substitution rate inferred from the previous step and that the fastest-evolving rate group (which sets the

inflection point) matches with the inferred mmax from Table 1 based on the Baltimore group that the virus belongs to. Finally, we

use TreeAnnotator to build a consensus tree and find the estimatedmedian and 95%HPD node heights. This approach fully captures

the uncertainty that may arise from the substitution model and tree topology. We note that while in the first step we may use substi-

tution models with rate heterogeneity (such as a gamma distribution) and various clock models to infer the short-term rate, in the

second step (i.e., constructing ultrametric distance trees) we must use a strict clock (i.e., rate = 1 across all branches) to infer the

genetic distance between every pair of sequences.

To further capture the effect of variation in the inferred mean rate (from BEAST) and mmax (from geometric least square fit) on the

clock model and, ultimately, the PoW-transformed ultrametric distance trees, we can either randomly draw numbers from the pos-

terior rate distribution or any other appropriate statistical distriubtions to find a range of parameter values for the short-term substi-

tution rate, CmD, and mmax. This enables us to convert each sampled distance tree into a time tree with a unique pair of values for CmDand
mmax.

Substitution rate inference of simulated datasets
We simulate a neutral haploid Wright-Fisher population of size Ne with L evolving sites under a constant mutation rate m per site such

that every nucleotide (A, C, G, and T) can mutate to any other nucleotide at the same rate m=3 – mutation rate is equal to substitution

rate under neutrality. We then sample from the entire population at two time points with an increasingly wider time gap, t�. Initially, we

allow the population to evolve for 10Ne generations before taking the first sample to ensure that neutral coalescent events reach their

steady state distribution and that the population, on average, coalesces every 2Ne generations. We then take the second sample t�

generations later and repeat this process 100 times to generate replicate sequences at both time points and run each set of simu-

lations in BEAST 1.10 to estimate the substitution rate (Figure S1). We load the simulated sequences (along with their sampling times)

on BEAST and use a strict molecular clock with a continuous-time Markov chain reference prior on substitution rates, a constant

population coalescent prior, and a Jukes-Cantor substitution model. For every simulated set, the Markov chain Monte Carlo was

run for 10,000,000 steps and parameter convergence was inspected visually.

METHOD DETAILS

Power-law rate decay due to site saturation
For a sequence that has diverged from its ancestor t generations ago under a constant and uniform substitution rate m per site per

year, the proportion of pairwise differences, pðtÞ, is given by Tajima and Nei41

pðtÞ = a
�
1� e�mt=a

�
(Equation 1)

such that a is the maximum proportion of pairwise differences and is given by a= 1�Pip
2
i where pi is the base frequency of the ith

nucleotide or amino acid. Assuming that d is the ‘true’ genetic distance between a pair of homologous sequences, i.e., d = mt, we

can estimate the observed genetic distance, bd, with an observed proportion of pairwise differences, bp, using the Felseinstein’s 1981

substitution model42

bd = cmt = � aMLn

�
1� bp�aM

�
(Equation 2)

where aM is the expected saturation frequency set by the substitution model. If the model correctly identifies the saturation fre-

quency, i.e., aM = a, Equation 2 accurately predicts the true genetic distance, i.e., bd = d, as long as the divergence time t � a=

m. As pðtÞ approaches saturation frequency at t�za=m, the observed proportion of pairwise differences will be bound by the number

of evolving sites. For instance, if the saturation frequency is a = 3=4, i.e., a standard Jukes-Cantor substitution model, to distinguish

between an observed pairwise difference of bp�
= 0:74 and bp�

= 0:741requires approximately one thousand evolving sites, all evolving

at rate m. Thus, beyond t�, the estimated distance, bd, will remain effectively unchanged. In other words, if the pair diverge beyond the

saturation point, the inferred rate follows a power-law rate drop with a slope �1 on a log-log plot (see gray curve in Figure S1A).

In the presence of purifying selection and/or amino acid and nucleotide biases, the substitution model in Equation 2 may overes-

timate the maximum proportion of pairwise differences, i.e., aM > a. For instance, if we apply a Jukes-Cantor measure of nucleotide

distance to a pair of sequenceswith a particular site preference that equally favors only two (out of the four) nucleotides, i.e., a = 1= 2,

the proportion of pairwise differences reaches saturation much earlier than what the chosen substitution model would predict. As a
e2 Current Biology 31, 1–8.e1–e5, November 8, 2021
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result, similar to the previous example (aM = a), the estimated rate drops as a power-law with slope �1 (orange curve in Figure S1A)

after reaching the saturation point, i.e., bmzaMLnfaM =ðaM � aÞg=t.
In the opposite extreme, i.e., when aM < a, the substitution model underestimates the true saturation frequency. Thus, the

observed proportion of pairwise differences surpasses the level predicted by the substitution model, i.e., bp=aMa1, at which point

the estimated substitution rate, bmzaLnfa =ða � aMÞg=t, goes to infinity (blue curve in Figure S1A).

Saturation of sites in the presence of rate heterogeneity
In the presence of rate heterogeneity, a fraction of sites may evolve at a rate that is much slower (or faster) than some other sites. In

principle, this processmay involveM different rate groups such that each group i evolves at rate mi and occupies a fraction of sitesmi.

Thus, the proportion of pairwise differences would be given by

pðtÞ =
XM
i = 1

miai

�
1� e�mi t=ai

�
(Equation 3)

such that
P

imi = 1 with the mean substitution rate CmD =
P

imimi. If we apply a measure of distance based on Equation 2 to an evolu-

tionary process with rate heterogeneity, Equation 3, it can reliably infer the mean substitution rate up to when the sites belonging to

the fastest substitution rate, mmax, reach saturation after t � m�1
max at which point the pattern of time-dependent rate decay emerges

and the mean substitution rate gradually plateaus at a value corresponding to the substitution rate of the slowest-evolving sites, mmin.

Once all the rate groups reach saturation at time t � m�1
min, the power-law rate decay with slope �1 emerges.

For instance, if the sequence evolution involves two rate groups, i.e.,M= 2, a fraction of sitesm1may evolve neutrally at rate m1 = m

and the remaining sites (1�m1) evolve epistatically such that a pair of sites need to mutate simultaneously to recover the wild-type

fitness, i.e., m2 = m2. Assuming the saturation frequency across all sites is equal and that the model correctly identifies their fre-

quency, i.e., ai = aM = a, we can use Equation 2 to recover the expected substitution rate CmD = m1m+ ð1 � m1Þm2. As the fast-

evolving sites approach the saturation point at t1za=m, the rate decay emerges and a sharp decline in estimated substitution rate

follows while the remaining fraction of sites, ð1 � m1Þ, keep accumulating new substitutions at rate m2, slowing down the speed

of the rate decay until those sites also reach saturation at t2za=m2 beyond which point the entire genome reaches saturation and

the power-law rate decay with slope �1 emerges. Figure S1B shows that as the proportion of slow-evolving sites increases, the

mean substitution rate goes down and the slope of the time-dependent rate decay becomes less steep.

Although our focus so far has been on the saturation of pairwise differences and how it can create a time-dependent rate effect, the

same holds true when tracking the evolutionary changes of a large number of sequences through time. Using a standard Jukes-

Cantor substitution model on a set of simulated sequences, both in the absence and presence of rate heterogeneity, we can recreate

similar patterns of time-dependent rate decay and show that, over longer timescales, i.e., when the divergence time between two

populations ismuch longer than the typical coalescent times, the variation in inferred substitution rates is dominated by the saturation

along the longest (internal) branch connecting the two populations (Figures S1C–S1H). We also find that, over short timescales, sys-

tematic under-estimation of the Time to the Most Recent Common Ancestor (TMRCA) results in inflated substitution rate estimates

(Equation 7).

Saturation of sites under the PoW model
Under the PoW model, the virus substitution rate is categorised into M discrete rate classes such that there is a fixed incremental

difference between any two consecutive rate groups, mi + 1 = DMmi, with a common ratio DM. Rate groups range from those evolving

the fastest, at rate mmax, to the ones evolving at the host substitution rate, mmin. The fraction of sites,mi, in each rate group i, evolving at

rate, mi, is an exponentially distributed number,mi = Celi, where C is the normalization factor, C = 1=
PM

j = 1e
lj, and the exponent co-

efficient, l, sets the tendency of sites to be either mostly slowly (l < 0) or rapidly (l > 0) evolving. Given a fixed common ratio between

consecutive rate groups, the substitution rate at the fastest-evolving sites can be determined by finding the total number of rate

groups,M, which, in turn, sets the inflection point for when the time-dependent rate decay emerges. Once the fastest-evolving sites

reach the saturation point, other rate groups that evolve more slowly (e.g., via epistatic and compensatory substitutions), saturate

chronologically as the time span of rate measurement, t, increases. This chronological saturation effect continues until the inferred

rate decays to the host substitution rate, mmin. Therefore, the time-dependent rate curve, according to the PoW model is given by

bmðtÞ = � aMLn

 
1� 1

aM

XM
i = 1

ami

�
1� e�mi t=a

�!,
t (Equation 4)

where the observed genetic distance between the derived and ancestral sequences, bd = bmt, is proportional to the time span of rate

measurement, t. While over short timescales, i.e., t � 1=mmax, several methodological (e.g., internal node calibration errors) and bio-

logical (e.g., purifying selection) artifacts may inflate the substitution rate estimates in viruses (i.e., such that bmðtÞ underestimates the

inferred rates), over longer time-scales (i.e., typically after a few years) the rate estimates are expected to be closer to themean (short-

term) substitution rate, CmD =
PM

i = 1mimi. Over such timescales, there is no site saturation, i.e., the rate curve is flat, and the inferred

short-term substitution rates can be reliably used to estimate divergence times between samples without significant influence from

site saturation. We also note that the finer the gap between consecutive rate groups, DM, gets, the more accurate the estimated rate

curve becomes. However, typically, less than 50 rate groups (i.e.,M < 50) is sufficient for all predictions. For a fixedDM, the exponent
Current Biology 31, 1–8.e1–e5, November 8, 2021 e3
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coefficient, l, together with the number of rate groups,M, are the two free parameters of the PoWmodel which set the short-term, CmD,
and maximum, mmax, substitution rates for any given dataset. While Equation 4 assumes that the saturation frequency, a, across all

sites is the same, there can be instances where, due to site preferences, some mutations do not appear at certain positions in the

virus genome. This can result in a reduction in saturation frequency at those sites (i.e., a < 3=4). However, to avoid overparametrizing

the model, in the absence of sufficient data, we assume identical saturation frequencies across all sites.

Distance tree transformation using the PoW model
Equation 4 allows for a one-to-one map between the inferred genetic distance and divergence time. Therefore, by esti-

mating the genetic distance (in units of substitutions), bd, between any pair of sequences under a JC69 substitution model

(i.e., aM = a = 3=4) we can solve Equation 5 to find the divergence time, t, since the common ancestor of each pair using the

PoW model.

bd = � 3

4
Ln 1�

XM
i = 1

mi 1� e�4mi t=3
� � !

(Equation 5)

More generally, we can apply other, more complex, substitution models to infer the genetic distance between pairs of sequence. For

instance, under the Tamura-Nei substitution model (TN93) where there is an analytically tractable formula for distance,43 the PoW-

transformed equation to find divergence time, t, is given by

bd =
2pTpC

pY

ða1 �pRbÞ+ 2pApG

pR

ða2 �pYbÞ+ 2pYpRb; (Equation 6)
k
_

1 =
a1 � pRb

pYb
;

k
_

2 =
a2 � pYb

pRb
;

where

a1 = � Ln

�
1� pYS1

2pTpC

� V

2pY

�
;

a2 = � Ln

�
1� pRS2

2pApG

� V

2pR

�
;

b= � Ln 1� V

2pYpR

� �
;

S1 = 2pTpTCðtÞ;
S2 = 2pApAGðtÞ;
V = 2pTpTAðtÞ+ 2pTpTGðtÞ+ 2pCpCAðtÞ+ 2pCpCGðtÞ;
such that k1 and k2 are the two different types of transition rates (transversions are all assumed to occur at the same rate) according

to the TN93 model, pi is the nucleotide equilibrium base frequency, and pijðtÞ is the transition probability (not to be confused with

transition rate) to go from nucleotide i to j according to the PoW model, ði; jÞ = fA;C;G;Tg. While the equilibrium base frequencies

and transition rates can be found numerically from the phylogenetic analysis using BEAST, the transition probabilities are found

from the eigenvalues of the transition matrix PðtÞ= fpijðtÞg= eQt (see Ho et al.43 for more details on the calculations). For example,

according to the PoW model, pTAðtÞ =
PM
i =1

mipAð1 � e�bi tÞ, where bi is the transversion rate from rate group i. We can also find a

relationship between the average substitution rate per rate group, mi, and bi which is given by
e4 Current Biology 31, 1–8.e1–e5, November 8, 2021
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mi = 2biðk1pTpC + k2pApG + pYpRÞ:
Similarly, Equation 6 can be used for the PoW transformation to be applied to awider range of substitutionmodels such as the HKY85

substitution model (i.e., k1 = k2).

Saturation of sites for simulated datasets
In Figures S1C–S1H, we recreate the time-dependent pattern of rate decay both in the absence and presence of rate heterogeneity

across sites, using a standard substitutionmodel on simulated data.We find that while the inferred substitution rates exhibit a power-

law rate decay with slope �1 over longer time intervals (see Figures S1C and S1D), the inferred TMRCAs tend to be overestimated

with a similar (inverse) power-law trend, i.e., bt � 1=bm (see Figures S2E and S2F). We also find an unexpected time-dependent rate

effect over short timescales. This occurs when the observation gap, t�, is much shorter than the expected coalescent time of the

population, i.e., t� � 2Ne. This also results in the underestimation of true TMRCAs which systematically makes worse predictions

for higher substitution rates. The expected rate curves (dashed lines shown in Figures S2C and S2D) can be approximated by replac-

ing pðtÞ from Equation 1 into bp from Equation 2 which is given by

bmðt�Þz � aMLn

(
1� 1

LaM

$
L
XM
i = 1

mia
�
1� e�miðt� + 2NeÞ=a�%),ðt� + TÞ (Equation 7)

such that bc is the floor function which represents the finite size effect of having L evolving sites on saturation frequency. The mean

divergence time between the two populations is approximately tzt� + 2Ne and the inferred divergence time is btzt� +T – this resem-

bles the mis-calibration effects reported elsewhere (see Equation 2 in Ho et al.44). The reason why Equation 4 only works as an

approximate is that themedian inferred TMRCA from simulation results, T, also varies with respect to observation gap t� (see Figures
S1E and S1F). However, for t�[2Ne, the variation in T becomes negligible compared to t�and only has second-order effects on in-

ferred substitution rates. Figures S2G and S2H show the tree topology under the two extremes, t� � 2Ne and t�[2Ne, respectively.

It indicates that, over long timescales, the time-dependent rate effects are dominated by the very long (and saturated) branch con-

necting the two populations that are t� generations apart. As a result, the decay dynamics looks very similar to the analytical results in

Figures S1A and S1B where we estimate the substitution rate between a pair of sequences separated by a very long branch.

QUANTIFICATION AND STATISTICAL ANALYSIS

The Method details provide in-depth descriptions of the quantifications and statistical analyses used in this manuscript.
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Figure S1. Estimated substitution rates, time to the most recent common ancestors, and phylogenetic 

trees of simulated datasets under different substitution rates. Related to STAR Methods and Figure 1. 

 



(A) Estimating the substitution rate 𝜇 = 10−3 (black dashed line) using Equation S2 for a pair of sequences 

that have diverged from each other 𝑡 generations ago under the correct substitution model (gray), a model 

that over-estimates the true saturation frequency (orange), 𝛼,  and a model that under-estimates the true 

saturation frequency (blue). (B) Estimating the expected substitution rate, < 𝜇 >, when a fraction 𝑚1 of 

sites evolve at rate 𝜇1 = 10−3 (black dashed line) and the remaining fraction, 1 − 𝑚1, at rate 𝜇2 = 10−6 

(red dashed line). The expression 𝑡−1 in both plots shows the dominating term in rate decay with respect to 

divergence time, 𝑡, corresponding to slope −1 on the graphs. (C) A population of size 𝑁𝑒 evolving neutrally 

with 𝐿𝑛 = 100 sites evolving at the same rate, 𝜇, and (D) a model with rate heterogeneity across sites such 

that 𝐿1 = 100 sites evolve at rate 𝜇 and the remaining 𝐿2 = 900 sites at rate 𝜇2. The rate is estimated as a 

function of observation gap, 𝑡∗, between when the first and second sampling point from the population. 

Dashed lines show the theoretical prediction according to Equation S6 and solid lines show the mean 

(expected) rates used for the simulations. (E) and (F) show the estimated TMRCA for the first group of 

sampled sequences, i.e. at 𝑡∗ = 0, and solid lines show the mean TMRCA according to neutral theory. The 

rates and TMRCAs are estimated using BEAST under a strict clock assumption. Dots represent the median 

values taken from 100 independent runs and error bars show the interquartile region. (G) and (H) show the 

maximum clade credibility trees for one simulation run corresponding to 𝜇 = 3 × 10−5  when the 

observation gap is 𝑡∗ = 10, 𝑡∗ ≪ 2𝑁𝑒 and  𝑡∗ = 1000, 𝑡∗ ≫ 2𝑁𝑒, respectively.  
 

 

  



   
   

   
   

   
 

Figure S2. Estimated time-dependent rate curves for each viral group and three selected genera according to the PoW model 

and their corresponding distribution of rate groups (inset). Related to Figure 2. 

The first two rows show two or three distinct mean substitution rates (coloured in gold, purple, and blue) that are selected for 

each virus family to estimate rate curves according to the PoW model. The bottom row shows the same rate curve estimations 

for Tobamoviruses with 3
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genera are selected as they have the widest timespan of rate measurement. The solid lines show the best fit and shaded areas 

the 95% confidence interval ( 1.58M = and 3 / 4
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Figure S3. Estimated divergence times for FV, HCV, and sarbecovirus datasets using standard 
substitution models and PoW transformation with uncertainty in the underlying clock model. Related 
to STAR Methods and Figure 3. 
Same legend as Figure 3. (A) Estimated divergence times between labelled internal nodes of FV (see Figure 3). For 

the PoW transformation using the HKY85 and JC69 substitution models, the short-term substitution rate,  , was 

randomly sampled from the Normal distribution, 
6 6

(mean 6.1 10 ,stdev 2.0 10 )N
− −

=  =  . (B) For HCV, we 

compare the results between a standard HKY+G model and two POW-transformed estimates using the HKY85 and 

JC69 substitution models. The short-term substitution rate,  , was randomly sampled from the posterior rate 

distribution of the standard HKY+G model. (C) Similarly, for Sarbecovirus, we compare the results between a 
standard HKY+G model and two POW-transformed estimates using the HKY85 and JC69 substitution models. The 

short-term substitution rate,  , was randomly sampled from the posterior rate distribution of the standard 



HKY+G model. In all the three datasets, the fastest-evolving rate group, 
max

 , was sampled from the Normal 

distribution, 
2 3

(mean 3.65 10 ,stdev 5.0 10 )N
− −

=  =  . 



Viral group Virus family/genus 
used for calibration 

Short-term substitution rate, 
Fastest rate group, 

max


Group I 

Poxviridae 5
0.3(0.06 2) 10

−
− 

3
0.6(0.2 3) 10

−
− 

Polyomaviridae 5
0.6(0.1 5) 10

−
− 

3
1(0.3 4) 10

−
− 

Adenoviridae 5
1(0.1 10) 10

−
− 

3
2(0.3 10) 10

−
− 

Group II 

Protoparvovirus 4
1(0.6 4) 10

−
− 

2
0.6(0.4 1) 10

−
− 

Erythroparvovirus 4
2(1 4) 10

−
− 

2
1(0.6 2) 10

−
− 

Circovirus 4
10(7 300) 10

−
− 

2
4(3 6) 10

−
− 

Group IV 

Tobamovirus 3
0.4(0.9 2) 10

−
− 

2
2(1 3) 10

−
− 

Flavivirus 3
1(0.4 5) 10

−
− 

2
4(2 10) 10

−
− 

Enterovirus 3
3(0.9 10) 10

−
− 

2
6(3 10) 10

−
− 

Group V 

Rhabdoviridae 3
0.4(0.2 1) 10

−
− 

2
0.3(0.2 0.4) 10

−
− 

Orthomyxoviridae 3
3(1 6) 10

−
− 

2
4(3 6) 10

−
− 

Paramyxoviridae 3
3(2 6) 10

−
− 

2
6(4 10) 10

−
− 

Group VI 
Deltaretrovirus 3

0.02(0.004 0.1) 10
−

− 
2

0.3(0.06 1) 10
−

− 

Lentivirus 3
1(0.7 3) 10

−
− 

2
4(3 6) 10

−
− 

Group VII 
Orthohepadnavirus 5

5(1 20) 10
−

− 
3

4(2 10) 10
−

− 

Avihepadnavirus 5
30(2 600) 10

−
− 

3
20(2 100) 10

−
− 

Table S1. Estimated short-term substitution rate and fastest-evolving rate group across 6 viral 
groups. Related to Table 1. 

Only short-term rate estimates (measured over time scales of <100 years) – along with the long-
term rate estimates (>100 years) from the entire data set – from a particular virus family or genus 
(rather than the entire viral group) is used for rate calibration in the PoW model. Parentheses 
correspond to 95% confidence intervals. 


	CURBIO17792_annotate.pdf
	A mechanistic evolutionary model explains the time-dependent pattern of substitution rates in viruses
	Introduction
	Results
	Power-law rate decay can emerge due to site saturation
	Conundrum of rate calibrations
	The PoW model of virus evolution

	Discussion
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Sarbecovirus dataset
	Hepatitis C virus dataset
	Foamy virus dataset
	R package for the construction of PoW-transformed phylogenies
	Substitution rate inference of simulated datasets

	Method details
	Power-law rate decay due to site saturation
	Saturation of sites in the presence of rate heterogeneity
	Saturation of sites under the PoW model
	Distance tree transformation using the PoW model
	Saturation of sites for simulated datasets

	Quantification and statistical analysis






