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Abstract

Nitro-fatty acids are formed and detected in human plasma, cell membranes, and tissue, modulating metabolic as well as

inflammatory signaling pathways. Here we discuss the mechanisms of nitro-fatty acid formation as well as their key chemical

and biochemical properties. The electrophilic properties of nitro-fatty acids to activate anti-inflammatory signaling pathways are

discussed in detail. A critical issue is the influence of nitroarachidonic acid on prostaglandin endoperoxide H synthases,

redirecting arachidonic acid metabolism and signaling. We also analyze in vivo data supporting nitro-fatty acids as promising

pharmacological tools to prevent inflammatory diseases.
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Introduction

Nitric oxide (NNO)-derived species (NOx) react with

unsaturated fatty acids to yield a variety of oxidized and

nitrated products (1). In particular, nitroalkenes (NO2-FA)

have been detected, identified, and quantified in plasma

as well as in cell membranes and tissue (2,3). The

mechanisms of fatty acid nitration in vivo remain

unknown, with suggested pathways including reactions

of unsaturated fatty acids with secondary products of NNO

oxidation such as nitrogen dioxide (NNO2), nitrite (NO2
–),

and peroxynitrite (ONOO–; Figure 1). Nitrogen dioxide can

be formed from NNO autoxidation (4). Alternatively, NNO2

can be formed from NO2
–, since NO2

– is present in

physiological fluids at high concentrations (5,6).

Moreover, NO2
– should be exposed to low pH in the

gastric compartment as well as in phagocytic lysosomes

to generate NNO2; indeed, the human stomach is a source

of NNO and bioactive nitrogen oxides from precursors

present in food and saliva (6). A critical step is the

protonation of NO2
– in the gastric lumen, thereby forming

nitrous acid (HNO2), which can also form NNO, NNO2, and

other nitrogen oxides (6). An additional lipid nitration

mechanism involves peroxynitrite. Peroxynitrite anion

(ONOO–) and peroxynitrous acid (ONOOH) are potent

one- and two-electron oxidants that can react with

unsaturated fatty acids (4). Homolysis of ONOOH yields
NNO2 and hydroxyl radical (NOH). In fact, ONOO–,

ONOOH, and/or their derived radicals have been observed

to readily diffuse through membranes to mediate fatty acid

oxidation and nitration (1,7-10). Several reports support

NO2-FA formation in vivo (11-14). In fact, nitroalkenes are

present endogenously as free, esterified, and nucleophilic-

adducted species (12), and although reports about in vivo

concentrations have changed from the micromolar (2) to

the picomolar range (15) in the past few years, their

presence has been shown to be greatly increased in

inflammatory models (12,14,16). During macrophage

activation by an inflammatory stimulus, one of the major

esterified lipid components, cholesteryl linoleate (CL),

becomes nitrated at the fatty acid moiety (12). The

formation of cholesteryl nitrolinoleate (NO2-CL) by acti-

vated macrophages is prevented by nitric oxide synthase

(NOS) inhibitors, supporting the contribution of NNO-

derived species toward CL nitration. More recently, it has

been demonstrated that NO2-FA is both present and

formed in mitochondria from cardiac ischemia/reperfusion

(13) or ischemic preconditioned (14) hearts.

Nitric oxide and arachidonic acid signaling
are linked through nitro-fatty acids

It has been well established that arachidonic acid (AA)

signaling cascades and NNO pathways are intrinsically

related (17). Nitration of AA yields a nitroalkene,

nitroarachidonic acid (NO2-AA). In activated macrophages,
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NO2-AA exerts a protective anti-inflammatory action,

diminishing NOS-2 expression and secretion of proinflam-

matory cytokines (18). Downregulation of NOS-2 by

nitroalkenes should contribute to the physiological shut-

down of inflammatory responses in macrophages. Both

NO2-AA and its methylated form (Met6-NO2-AA) increased

cGMP levels in treated endothelial cells, suggesting that

guanylate cyclase was activated directly or via NNO/NNO-

like species (19). Nitroalkenes react with nucleophilic

residues in proteins (16); they are potent electrophiles,

and the addition of a nitro group (-NO2) to a double bond at

the carbon chain of the unsaturated fatty acids leads to an

alkenyl nitroconfiguration with electrophilic reactivity of the

b-carbon adjacent to the nitro-bonded carbon. Through

Michael addition reactions, nitroalkenes can react with

nucleophiles (i.e., Cys or His residues), yielding a new

carbon-carbon or carbon-heteroatom bond framework

(20-22). Biochemical studies reveal that NO2-FA rapidly

and reversibly undergoes Michael addition with thiols and,

to a lesser extent, primary and secondary amines (20-22).

In contrast to other lipid-derived electrophiles, nitroalkyla-

tion of Cys and His is reversible (16,20,22). Through this

mechanism, NO2-FA alkylate susceptible thiols of multiple

transcriptional regulatory proteins affect downstream gene

expression and the metabolic and inflammatory responses

under their regulation.

Nitroalkene activation of anti-inflammatory
signaling pathways

Under physiological conditions, intracellular levels of

glutathione can detoxify NOx, favoring NO2-FA formation

to activate anti-inflammatory signaling pathways (Figure 2).

When high production rates of NOx such as peroxynitrite

occur related to inflammation, antioxidant mechanisms

are compromised; then, protein tyrosine nitration (and

oxidation) increase and participate in events such as

mitochondrial cytochrome c release and apoptosis

(Figure 2). Even under this unfavorable biochemical

scenario, NO2-FA may serve as a cytoprotective agent,

Figure 1. Mechanisms of unsaturated fatty acid nitration. Nitrogen dioxide can be formed by at least three major biologically relevant

mechanisms (see text) and react with unsaturated fatty acids to preferentially form (at low oxygen tensions) nitro-alkenes (nitro group

bonded at the double bond) and nitro-allyl derivatives (nitro group bonded at a single bond). NO2-FA alkylates susceptible thiols of

multiple transcriptional regulatory proteins, affecting downstream gene expression and the metabolic and inflammatory responses

under their regulation.
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partially counteracting the proinflammatory effects of

oxidant exposure, thus inhibiting the propagation of lipid

oxidation and protein nitration, in part by attenuating the

oxidant-dependent inflammatory response. Key anti-

inflammatory mechanisms include the following.

Peroxisome proliferator-activated receptor (PPAR)
activation

The transcriptional factor PPAR has been found to

serve as a nuclear receptor capable of selectively binding

NO2-FA. Nitroalkenes are able to potently regulate the

expression of multiple PPAR target genes (23-25). The

effects of NO2-FA on full-length PPAR were then tested in

transfection assays using a PPARc response reporter,

where nitroalkenes potently activated all PPAR subtypes,

having a stronger activity on PPARc than PPARa and

PPARb/d (11). This is of significance since PPARc has

been associated with anti-inflammatory actions such as

modulation of expression of several proinflammatory

cytokines and chemokines in activated macrophages.

Inhibition of nuclear factor-kappa B (NF-kB)
Various mechanisms have been proposed to explain

the protective actions exerted by nitroalkenes. One of

them involves the inhibition of NF-kB translocation to the

nucleus (11,13). In fact, NF-kB plays an important role

during inflammatory responses, regulating genes that

encode proinflammatory cytokines. Nitroalkenes can

inhibit lipopolysaccharide-induced secretion of proinflam-

matory cytokines in macrophages [e.g., interleukin-6,

tumor necrosis factor-a, and monocyte chemoattractant

protein 1 (MCP-1)]. These observed effects resulted from

the covalent alkylation of recombinant NF-kB p65 protein

in vitro and from a similar reaction with the p65 subunit in

macrophages. Inhibition of NF-kB migration to the

nucleus inhibited DNA binding activity and repressed

NF-kB-dependent target gene expression (11).

Induction of hemoxygenase-1 (HO-1)
HO-1 catalyzes the oxidative degradation of heme to

biliverdin, exerting anti-oxidant and anti-inflammatory

actions. Induction of HO-1 is an endogenous cytoprotective

pathway triggered by a variety of stress-related signals and

electrophilic species. Nitroalkenes induce HO-1 expression

in endothelial cells (26), RAW264.7 (11), and J774.1

macrophages (12) by a PPARc-independent mechanism

as well as both NNO-dependent and NNO-independent

mechanisms (26). Considering the vascular protective

effects of HO-1 expression, induction of HO-1 represents

a key novel cell-signaling action of nitroalkenes.

Activation of nuclear factor E2-related factor 2 (Nrf2)
Nrf2 is a mediator of antioxidant and phase II

detoxifying enzyme expression (27-29). Nrf2 is a tran-

scription factor that is in an inactive form in the cytosol due

to the activity of Kelch-like ECH-associated protein 1

Figure 2. Nitroalkene-activation of anti-inflammatory signaling pathways. On the left side of the scheme, the signaling role of

nitroalkenes and nitroalkene thiol adducts on transcription factors is indicated in a cell with normal levels of GSH. On the right side,

cytotoxic events predominate as a result of an increase in NOx, leading to pro-oxidant pathways that include GSH depletion, protein

tyrosine nitration and lipid oxidation, triggering apoptotic cascades. Adapted from Ref. 47, with permission.
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(Keap1). When activated Nrf2 migrates to the nucleus, it

binds as a heterodimer to the antioxidant response

element (ARE) in DNA, activating the expression of

phase 2 enzymes (29). Potential activators for Nrf2

include lipid electrophiles that react with reactive Keap1

thiols, dissociating Nrf2 from ubiquitin E3 ligase complex

and facilitating nuclear accumulation and downstream

effects on gene transcription (29). Keap1 is highly reactive

to nitroalkylation because it constitutes a cysteine-rich

protein (27-29). Diverse functional studies using Keap1

mutants showed that Cys151 is an electrophile sensor

residue whose adduction causes the dissociation of

Keap1 from Cul3, preventing Nrf2 proteosomal degrada-

tion and allowing the activation of its target genes via

binding to AREs (30-32). Nitro-fatty acids are Cys151-

independent Nrf2 activators, as Keap1 Cys151 mutants

remain unaffected by nitroalkenes, enhancing, instead of

diminishing, the binding of Keap1 with Cul3 (33). Like

HO-1, Nrf2 activation protects various cell types against

oxidative stress. In this way, vascular smooth muscle cell

(VSMC) proliferation is inhibited by physiological levels of

nitroalkenes (34). The signaling pathway that participates

in this action involves the Nrf2/ARE system. During VSMC

inhibition of proliferation, Nrf2 nuclear translocation is

enhanced by NO2-FA, suggesting that this signaling

cascade is also involved in the observed anti-inflammatory

actions of nitroalkenes (34). The role of NO2-FA on the

Nrf2 pathway has also been explored in human aortic

endothelial cells (35). The expression of Nrf2-dependent

genes, including HO-1 and glutamate cysteine ligase

modifier subunit, was significantly stimulated by NO2-FA;

however, array analyses showed that the majority of

NO2-FA-regulated genes were regulated by Nrf2-

independent pathways. More in depth studies demon-

strated that the heat shock response is the major pathway

activated by NO2-FA (35). Regulation of the heat shock

response is a novel anti-inflammatory and cytoprotective

action of NO2-FA in addition to the other protective cell

signaling functions reported for nitroalkenes.

Modulation of prostaglandin endoperoxide H
synthase (PGHS)

PGHS is a key enzyme of AA metabolism catalyzing

the formation of prostaglandin H2 (36-38). Two isoforms of

PGHS (PGHS-1 and PGHS-2) are found in mammalian

tissues. PGHS-1 is constitutively expressed, whereas

PGHS-2 is an inducible enzyme. Both isoforms are of

pharmacological importance because they are targets for

nonsteroidal anti-inflammatory drugs (39). Prostaglandin

H2 formation by PGHS catalysis involves two separate

reactions at different active sites (36-38). The first is

oxidation of AA by the cyclooxygenase reaction to yield

prostaglandin G2, where two molecules of oxygen are

added to AA, and the second is reduction of the

hydroperoxyl group at C15 by the peroxidase reaction,

yielding prostaglandin H2 (37,38,40). We have recently

evaluated the interaction of the nitrated derivative of AA

with PGHS (41). Kinetic analysis showed that the

inhibition of peroxidase activity exerted by NO2-AA was

time- and concentration-dependent in both PGHS-1 and

PGHS-2, suggesting a two-step mechanism of inactiva-

tion: an initial reversible binding followed by a practically

irreversible event leading to enzyme inactivation.

Inactivation was associated with an irreversible disruption

of heme binding to the protein. The observed effects for

NO2-AA were selective, since other nitroalkenes tested

were unable to inhibit enzyme activity. In activated human

platelets, NO2-AA significantly decreased PGHS-1-

dependent thromboxane B2 formation in parallel with a

decrease in platelet aggregation, thus confirming the

biological relevance of this novel inhibitory pathway (41).

These anti-platelet effects were cGMP-independent and

did not involve Ca2++-store-dependent mobilization, pro-

viding a possible novel mechanism for platelet regulation

in vivo. Signaling downstream of protein kinase C (PKC),

such as a-granule secretion and extracellular signal-

regulated kinase 2 activation, was strongly inhibited by

NO2-AA (42). Inhibition of PKCa translocation to the

plasma membrane represents a potential mechanism for

platelet regulation in vivo.

Modulation of NADPH oxidase (NOX)
A novel additional mechanism by which NO2-AA

may have anti-inflammatory actions is the regulation of

superoxide radical (O2
–N) production via NOX isoforms. In

fact, nitroalkenes may alter the formation of O2
–N during

macrophage activation by modulating phagocytic NOX-2.

Recent data show that NO2-AA inhibits NOX-2-mediated

O2
–N production in activated macrophages (43). The

mechanism involves prevention of migration of cytosolic

subunits to the membrane, thus inhibiting correct assembly

of the active enzyme. This inhibitory role of nitroalkenes

observed during macrophage activation could facilitate the

resolution of inflammation.

Therapeutic potential

While the biochemical mechanisms leading to lipid

nitration are under active investigation, there is unambig-

uous evidence of their formation in vivo as well as their

increase during inflammatory conditions. Thus, it is

possible that, at the levels expected to be found in vivo

during chronic inflammatory conditions, nitrated lipids may

serve as anti-oxidant and anti-inflammatory agents,

partially counteracting the proinflammatory effects of

oxidant exposure. There are several reports using NO2-

FA as pharmacological modulators of inflammation-

related diseases in animal models (13,14,44). Nitro-fatty

acid subcutaneous administration to angiotensin II-treated

mice significantly lowered the increase in blood pressure

as well as the contractile responses through NO2-FA

binding to the AT1R, modulating intracellular signaling
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cascades (inositol-1,4,5-trisphosphate and calcium mobi-

lization) (44). These results show that NO2-FA diminishes

the pressor response to angiotensin II, inhibiting AT1R-

dependent vasoconstriction and suggesting that NO2-FA

can be a pharmacologically relevant modulator of

hypertension (44). NO2-FA were also tested in C57BL/6

mice subjected to coronary artery ligation followed by 30-

min reperfusion (I/R). When administered exogenously

during an ischemic episode, NO2-FA exerted protection

against I/R injury, reducing the infarct size as well as

preserving the left ventricular function (13). In an animal

model of atherosclerosis, subcutaneous administration of

NO2-FA potently reduced atherosclerotic lesion formation

(45). More recently, it has been demonstrated that acute

administration of NO2-FA is effective to reduce vascular

inflammation in vivo (46). The mechanism involves a

direct role for NO2-FA in the disruption of the Toll-like

receptor 4 signaling complex in lipid rafts, leading to

resolution of proinflammatory activation of NF-kB in the

vasculature.

Although beneficial effects of NO2-FA have been clearly

demonstrated in different in vivo models, there are still no

reports evaluating the potential toxicity that this compound

could exert when administered for longer periods of time.

Further study is necessary to determine whether NO2-FA

supplementation would exert novel anti-inflammatory and

tissue protective actions in human disease.
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