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Significant progress in our understanding of the mechanism of
fatty acid desaturation has been achieved. The site of initial
oxidation has been determined for several membrane-bound
desaturases and a common cryptoregiochemical theme has
been revealed. The results of several studies, including a
detailed analysis of a soluble plant desaturase system, point to
a close mechanistic relationship between dehydrogenation and
hydroxylation pathways.
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Abbreviations
ACP acyl carrier protein 
FAD2 oleate ∆12 desaturase
KIE kinetic isotope effect
MMO methane monooxygenase

Introduction
Fatty acid desaturases catalyze highly stereoselective,
regioselective and chemoselective O2-dependent syn-dehy-
drogenation reactions, as exemplified by the transformation
of stearoyl CoA to its oleyl counterpart (Figure 1) [1,2].
Enzymatic reactions of this type play a critical role in
adjusting the biophysical properties of membrane lipids
and in the biosynthesis of cellular signalling agents such as
ceramides, arachidonic acid derivatives and pheromones.
The past decade has witnessed significant progress in our
understanding of the molecular and structural biology [3–6]
as well as the bioinorganic chemistry of fatty acid desat-
urases [7]. As a result of these efforts, it is now recognized
that this family of enzymes can be divided into two classes:
first, a large set of integral membrane-bound proteins that
have a probable multi-histidine diiron coordination site and
act on CoA- or phospholipid-linked substrates; and second,
a smaller group of soluble plant desaturases that contain a
well-characterized, carboxylate-bridged, diiron cluster 
similar to that found in methane monooxygenase [8] and
which convert the acyl carrier protein (ACP) derivative of
substrates to the corresponding product. The mechanistic
details of how these remarkable enzymes function are now
beginning to emerge. Here, we review recent advances in
this area of research.

Mechanistic model
A generic mechanistic scheme for non-heme, diiron-mediated
desaturation, which is based on all of the available 
experimental evidence, is shown in Figure 2. An initial,

energetically difficult C–H activation step, executed by a
compound Q-type oxidant [8], produces a carbon-centred
radical/FeOH pair that disproportionates to give an olefinic
product and iron-bound water either directly or by a one
electron oxidation/deprotonation sequence. The reactive
intermediate can also collapse by hydroxyl capture to give
a secondary alcohol; indeed, several bifunctional desaturase/
hydroxylase diiron and monoiron systems are now known
[9–12,13••]. The switch controlling the ratio of rate constants
associated with each reaction pathway remains an intriguing
question. One possibility is that the positioning of the 
substrate relative to oxidant plays an important role in
deciding reaction outcome. That is, if access to the hydro-
gen β to the putative radical centre is denied (negative
catalysis) [14], then oxygenation of substrate would be the
only alternative.

Membrane-bound desaturases:
cryptoregiochemistry
Recent mechanistic research on this class of desaturases
has focussed on pinpointing the site of initial oxidative
attack (cryptoregiochemistry [15]) involved in double-
bond formation. The most versatile method of achieving
this goal has been through the use of a competitive kinetic
isotope effect (KIE) method [15]. This approach is based
on the premise that initial C–H activation should be 
energetically more difficult and therefore more sensitive to
isotopic substitution than the second C–H bond-breaking
step (Figure 2). Typically a ~1:1 mixture of regiospecifically
dideuterated substrate and its non-deuterated parent is
incubated with a convenient source of the desaturase 
and the d1/d0 ratio of the olefinic product evaluated by 
mass-spectral analysis. In this manner, the intermolecular
deuterium isotope effect on C–H cleavages for a large
number of membrane-bound desaturases from a variety of
aerobic life-forms has been determined (Figure 3). These
include ∆4 (rat liver microsomes [16•]), ∆5 (Bacillus subtilis,
bacteria [17]), ∆6 (Tetrahymena thermophila, protist [18]), ∆9

(Saccharomyces cerevisiae, yeast [15]; Chlorella vulgaris, green
alga [19•]; Spirulina platensis, cyanobacteria [20]), ∆11
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Figure 1

The prototypical fatty acid desaturase-mediated reaction.
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(Spodoptera littoralis, insect [21]), ∆12 (Arabidopsis thaliana,
plant [22]; C. vulgaris, green alga [19•]), and ∆15 (ω-3)
desaturases (Caenorhabditis elegans, nematode [23•]; A. thaliana,
plant [24]). The study of plant and nematode desaturases
was greatly aided by the functional expression of these
enzymes in a host yeast system (e.g. [25]).

These studies have revealed two remarkably consistent
trends. Firstly, only one of the C–H cleavage steps involved
in desaturation is subject to a large deuterium KIE
(kH/kD ~5–8); a negligible effect being found at the proximal
carbon (kH/kD ~1). This clearly indicates a stepwise mechanism
and rules out a synchronous removal of hydrogens, as has
been suggested previously [26]. Secondly, the isotopically
sensitive step uniformly occurs at the carbon closest to 
C-1, which, according to our mechanistic model (Figure 2),
implies that desaturation is initiated at this site.
Corroborating evidence for the correctness of these cryp-
toregiochemical assignments is available in nearly all cases:
incubation of a series of thia-substrate analogues with ∆6

and ∆9 desaturases leads to preferential, enantioselective
sulfoxidation when the sulfur probe is at the 6- and 
9-positions [18,27]. More recently, the formation of low-
level quantities of 5-, 9-, 12-, 15-monohydroxy products as
byproducts of 5-, 9-, 12-, 15-desaturation, respectively, have
been detected [13••]. Finally, enzymes that are closely
related to the rat liver ∆4 dihydroceramide desaturase and
plant ∆12 oleate desaturase (FAD2) produce exclusively 
4- and 12-hydroxyated products [28,29].

The data presented above, coupled with the results of several
stereochemical investigations [6], point to a common active-site

architecture that has been tuned to give a rich variety of
unsaturated fatty acids. This catalytic diversity is also evident
in reactions catalyzed by a FAD2 subfamily that lead to the
further oxidation of linoleate in plants: 1,4-dehydrogenation
producing conjugated dienes, 1,2-dehydrogenation (alkyne
formation) and epoxidation [30–32]. A recent KIE investigation
on the 1,4-desaturation of linoleate leading to calendate
((E,E,Z)-8,10,12)-octadecatrienoate clearly indicates that 
this reaction is initiated at C-11 (PH Buist and PS Covello, 
unpublished data).

Insect fatty acid signatures
Variations in desaturase regioselectivity and stereoselectivity
are critical to the biosynthesis of species-specific semio-
chemicals [33] such as insect pheromones. A well-studied
case is the S. littoralis desaturating system, which produces
a unique blend of monoenoic and dienoic tetradecanoates
(Figure 4). Both the stereochemistry and crypto-regio-
chemistry of these processes have been elucidated 
through the use of stereospecifically monodeuterated and
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Figure 2

Generic mechanism for fatty acid desaturation showing its relationship
to hydroxylation. The structures of the diiron oxidant and the reactive
intermediate are speculative. It is believed that the oxidizing species is
generated by oxygenation of the diferrous state, followed by
rearrangement of an (Fe(III))2-peroxo intermediate.

Slow

IV

Fe
O

Fe
O

IV
IV

Fe
OH

Fe
O III

III

Fe

H2O

Fe
O

III
III

FeFe
O

III

Fast

H

H

H

H
H

H

H

HH
OH

H

H

H

Current Opinion in Chemical Biology

Figure 3

Cryptoregiochemistry of various fatty acid dehydrogenations catalyzed
by membrane-bound desaturases. Arrows indicate the sites of initial
oxidation as determined by KIE effects.
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regiospecifically dideuterated substrates, respectively. The
action of what appears to be a single ∆11 desaturase on two
possible substrate conformers via an initial abstraction of
the pro-R hydrogen at C-11 leads to a mixture of (E/Z)-11-
tetradecenoates [21]. Further support for the single enzyme
model has been gained recently by the cloning and 
expression of a related moth desaturase that produces a
mixture of (E/Z)-11-tetradecenoates from myristoyl CoA
[34]. Similarly, a single plant ∆8 desaturase cloned from
Borago officinalis catalyzes the formation of a mixture of
geometric isomers [35] (see also Update).

Interestingly, the course of the next oxidative step in
Spodoptera pheromone biosynthesis is dependent on the
stereochemistry of the 11-enoic substrate: (E)-11-tetrade-
cenoate undergoes C-9-initiated, 1,2-dehydrogenation,
whereas the (Z)-isomer is processed to give an (E,E)-10,12
tetradecadienoate by 1,4-desaturation (initial site of 
oxidation at C-10) [36,37•]. The stereochemistry of both
oxidations has also been determined and found to be closely
related, as shown in Figure 4 [38•]. The fact that 
(Z)-9-desaturation is initiated at C-9 and not at the thermo-
dynamically more favourable allylic C-10 position can be
attributed to a strict cryptoregiochemical imperative
imposed by the enzyme active site.

Soluble plant desaturases
The most important member of this class of proteins is the
castor stearoyl–ACP ∆9 desaturase — a dimer consisting of

two identical subunits. This enzyme has been characterized
by X-ray crystallography and a narrow, hydrophobic 
binding pocket that can accommodate a stearoyl substrate
has been identified [39]. Some of the fundamental mecha-
nistic parameters of the stearoyl–ACP ∆9 desaturase have
been determined recently. Hydrogen removal was shown
to occur in syn fashion with pro-R enantioselectivity [40••].
Using regiospecifically deuterated substrates, it was
demonstrated that the intermolecular deuterium KIE on
C–H cleavage at both the 9- and 10-positions was ~1 [41].
It is likely that the intrinsic KIE values associated with
C–H cleavage were masked by another kinetically more
important step in the catalytic cycle, such as substrate
binding — an event that is known to induce O2 binding
[42]. The prediction that the diiron oxidant is not located
symmetrically between C-9 and C-10 of the substrate was
confirmed through the use of thia-substituted analogues. 
It was found that 10-thiastearoyl ACP was converted 
cleanly to the corresponding sulfoxide, whereas oxidation
of the 9-thia isomer gave a mixture of the sulfoxide as a
minor product along with a novel, as yet uncharacterized, 
product [41,43,44].

In an effort to link desaturase-mediated dehydrogenation
with the hydroxylation chemistry executed by methane
monooxygenase (MMO) [6], the oxidations of (R)- and
(S)-9-fluorostearoyl ACP were compared (Figure 5) [40••].
Under conditions of partial and complete conversion, the
latter fluoroanalogue was processed to give the fluoroolefin
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Figure 4

Biosynthesis of insect pheromones:
Dependence of reaction outcome on
(a) conformation and (b) configuration of
substrates. The hydrogens marked with an
asterisk are removed first in an energetically
difficult and isotopically sensitive step.
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with the anticipated stereochemistry along with a 
small amount of a threo-fluorohydrin. By contrast, the 
(R)-fluorostearate — a substrate designed to block the
dehydrogenation pathway — was oxidized to give mainly
‘error’ fluoroolefinic products along with a mixture of
minor hydroxylated compounds. The observed shift in
desaturase regioselectivity (∆9 to ∆10) through the use of
unnatural substrates had been noted previously [45] but
the reversal of stereochemical outcome (‘cis’- to ‘trans’-
olefin) was completely unexpected. A detailed mechanistic
analysis of the (R)-9 fluorosubstrate reaction led to the 
conclusion that dehydrogenation and hydroxylation were
initiated at the same carbon in accord with the mechanistic
scheme depicted in Figure 2. The elevation of ∆9 desat-
urase-mediated hydroxylation activity from undetectable
(< 0.1% of total products) for the parent substrate to ~10%
for both 9-fluorosubstrates is noteworthy. Further insight
into the origin of this substituent effect might be obtained
by the application of high-level computational studies of
the type used to analysis the mechanism of MMO [46].

Conclusions
The invention and application of novel mechanistic probes
has led to a more sophisticated understanding of how fatty
acid desaturases and related enzymes [47•,48] carry out

their ultra-selective oxidation chemistry. This information
can now serve as a useful platform for the design of novel
desaturase inhibitors — an activity of growing importance
given the key role that desaturases play in the life cycle of
the cell [49]. In addition, the results of cryptoregiochemical
and stereochemical analyses can be used to validate the
structures of substrate/desaturase complexes as these
become available. Currently, the barrier to obtaining 
structural data of this sort remains very high in the case of
membrane-bound desaturases, as these proteins have been
notoriously difficult to isolate in sufficient quantity [50].
Nevertheless, with the help of new microbial expression
systems [51], it is hoped that detailed structural information
on this important class of enzymes will become available in
the near future.

Update
Very recently, the ∆8 sphingolipid desaturase alluded to in
our discussion on insect fatty acid signatures has been
examined using stereospecifically and regiospecifially
deuterated substrates [52]. It was found that both E
and Z olefinic isomers were formed in a stereospecific
manner by syn-elimination of two vicinal hydrogens.
Further mechanistic studies on this fascinating system
are ongoing.
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Probing the mechanism of a soluble plant ∆9 desaturase: the
desaturase/hydroxylase connection. (a) The stereochemistry of
hydrogen removal. (b) Products obtained from oxidation of 

(S)-9-fluorostearoyl ACP. (c) Products obtained from oxidation of 
(R)-9-fluorostearoyl ACP. Arrows indicate the site of initial oxidative
attack as determined by deuterium-induced reaction pathway branching.
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