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SUMMARY

The global spread of SARS-CoV-2/COVID-19 isdevastating health systems and economies
worldwide. Recombinant or vaccine-induced neutralizing antibodies ar e used to combat the
COVID-19 pandemic. However, the recently emerged SARS-CoV-2 variants B.1.1.7 (UK),
B.1.351 (South Africa) and P.1 (Brazil) harbor mutationsin the viral spike (S) protein that
may alter virus-host cell interactions and confer resistanceto inhibitors and antibodies.
Here, using pseudoparticles, we show that entry of all variantsinto human cellsis
susceptible to blockade by the entry inhibitors soluble ACE2, Camostat, EK-1 and EK-1-
C4. In contrast, entry of the B.1.351 and P.1 variant was partially (Casirivimab) or fully
(Bamlanivimab) resistant to antibodies used for COVID-19 treatment. M oreover, entry of
these variants was less efficiently inhibited by plasma from convalescent COVID-19
patients and sera from BNT 162b2 vaccinated individuals. Theseresultssuggest that SARS-
CoV-2 may escape neutralizing antibody responses, which hasimportant implications for

effortsto contain the pandemic.
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INTRODUCTION
The pandemic spread of severe acute respiratodreyre coronavirus 2 (SARS-CoV-2), the
causative agent of coronavirus disease 2019 (COMP/is ravaging economies and health
system worldwide and has caused more than 2.3omifleaths ((WHO), 2020). SARS-CoV-2,
an enveloped, positive-strand RNA virus uses itepe protein spike (S) to enter target cells
and the viral and cellular factors involved in aalitry constitute targets for antiviral intervemntio

Host cell entry depends on S protein binding toddl&ular receptor ACE2 and S protein
priming by the cellular serine protease TMPRSSXffHann et al., 2020b; Zhou et al., 2020) and
these processes can be disrupted by soluble AC&E&ame protease inhibitors (Hoffmann et
al., 2020b; Monteil et al., 2020; Zhou et al., 2DZhe suitability of these agents for COVID-19
treatment is currently being evaluated within dabitrials. Further, the S protein of SARS-CoV-
2 is the main target for neutralizing antibodied aaveral recombinant neutralizing antibodies,
have been granted emergency use authorization (EyA)OVID-19 treatment (Baum et al.,
2020a; Chen et al., 2020). Finally, protective mRIMAd vector-based vaccines encoding the
SARS-CoV-2 S protein have been approved for hunsarand are considered key to the
containment of the COVID-19 pandemic (Baden et2f121; Polack et al., 2020).

The genetic information of SARS-CoV-2 has remaireddtively stable after the detection
of the first cases in Wuhan, China, in the wintason of 2019. The only exception was a
D614G change in the viral S protein that becameidant early in the pandemic and that has
been associated with increased transmissibilitylf€oet al., 2020; Plante et al., 2020; Volz et
al., 2021). In contrast, D614G has only a moddmfact on SARS-CoV-2 neutralization by sera
from COVID-19 patients and by sera from vaccinatetividuals (Korber et al., 2020; Weissman
et al., 2021). In the recent weeks several SARS-2a@driants emerged that seem to exhibit

increased transmissibility. These variants harbgtations in the viral S protein that may
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compromise immune control, raising concerns thatr#pid spread of these variants might
undermine current efforts to control the pandemic.

The SARS-CoV-2 variant B.1.1.7 (UK variant), alsoned variant of concern (VOC)
202012/01 or 201/501Y.V1, emerged in the Unitedd¢iom and was associated with a surge of
COVID-19 cases (Kidd et al., 2021; Leung et al2P0 Subsequently, spread of the B.1.1.7
variant in other countries was reported (Clard.e821; Galloway et al., 2021; Surleac et al.,
2021; Umair et al., 2021; Yadav et al., 2021).dtidors nine mutations in the S protein, six of
which are located in the surface unit of the SgmtS1, and three are found in the
transmembrane unit, S2 (Fig. 1). Exchange N501¥dated in the receptor binding domain
(RBD), a domain within S1 that interacts with ACERd its presence was linked to increased
human-human transmissibility (Leung et al., 202ia@ et al., 2021). Variants B.1.351
(501Y.V2, also termed South Africa variant, (Mweradal., 2021)) and P.1 (501Y.V3, also
termed Brazil variant, (da Silva Francisco et2021)) were also purported to be more
transmissible and these variants harbor nine awkeelmutations in their S proteins,
respectively, including three changes in the RBB1RN/T, E484K and N501Y (Fig. 1) (CDC,
2021). However, it is largely unclear how the miotas present in the S proteins of B.1.1.7,
B.1.351 and P.1 impact host cell interactions arstaptibility to entry inhibitors and antibody-
mediated neutralization.

Here, we show that the S protein of the B.1.1.7,351 and P.1 variants mediate robust
entry into human cell lines and that entry is blettky soluble ACE2 (SACE2), protease
inhibitors active against TMPRSS2 and membranefusihibitors. In contrast, monoclonal
antibodies with EUA for COVID-19 treatment partiatir completely failed to inhibit entry
driven by the S proteins of the B.1.351 and P.lam#s. Similarly, these variants were less

efficiently inhibited by convalescent plasma ancadeom individuals vaccinated with
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BNT162b2. Our results suggest that SARS-CoV-2 wtsi8.1.351 and P.1 can evade inhibition

by neutralizing antibodies.
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RESULTS

The spike proteins of the SARS-CoV-2 variants mediate robust entry into human cell lines

We first investigated whether the S proteins of SAROV-2 WT (Wuhan-1 isolate with D614G
exchange), B.1.1.7, B.1.351 and P.1 variants (Bignediated robust entry into cell lines. For
this, we used a vesicular stomatitis virus (VSV3dmhvector pseudotyped with the respective S
proteins (Fig. S1A). This system faithfully mimiksy aspects of SARS-CoV-2 entry into cells,
including ACE2 engagement, priming of the S prot®inTMPRSS2 and antibody-mediated
neutralization (Hoffmann et al., 2020b; Riepleakt 2020; Schmidt et al., 2020). The following
cell lines are frequently used for SARS-CoV-2 resleand were employed as target cells in our
study: The African green monkey kidney cell liner®evero cells engineered to express
TMPRSS2, the human embryonic kidney cell line 29333T cells engineered to express ACEZ2,
the human lung cell line Calu-3 and the human cakdhline Caco-2. All cell lines tested
express endogenous ACEZ2. In addition, Calu-3 ammb-Qacells express endogenous TMPRSS2
(Bottcher-Friebertshauser et al., 2011; Kleine-Wedteal., 2018).

All S proteins studied were robustly expressedraediated formation of syncytia in
transfected cells (Fig. 2A). Entry into all celidis was readily detectable (Fig. 2B and Fig. S1B).
Particles bearing the S proteins of the SARS-Coxatzants entered 293T (P.1) and 293T-ACE2
(B.1.351 and P.1) cells with slightly reduced eéficy as compared to particles bearing WT S
protein, while the reverse observation was mad€#&du-3 cells (B.1.1.7). For the remaining cell
lines, no significant differences in entry efficignwere observed (Fig. 2B). Collectively, these
results indicate that the mutations present irlpeoteins of the B.1.1.7, B.1.351 and P.1

variants are compatible with robust entry into haroalls.
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The spike proteins of the SARS-CoV-2 variants mediate fusion of human cells

The S protein of SARS-CoV-2 drives cell-cell fusi@sulting in the formation of syncytia and
this process might contribute to viral pathogenéishrieser et al., 2021). We employed a cell-
cell fusion assay to determine whether the S prstef the B.1.1.7, B.1.351 and P.1 variants
drive fusion with human cells. For this, the S pio$ were expressed in effector cells, which
were subsequently mixed with target cells engirceeexpress ACE2 alone or in conjunction
with TMPRSS2. The S protein of SARS-CoV was inchlids control. The SARS-CoV S protein
failed to mediate fusion with target cells expreganly ACE2 but efficiently drove fusion with
cells coexpressing ACE2 and TMPRSS2 (Fig. 3A-Bexa®ected (Hoffmann et al., 2020a). In
contrast, the SARS-CoV-2 S protein mediated efficreembrane fusion in the absence of
TMPRSS2 expression in target cells (Fig. 3A,B) agaikeeping with expectations (Hoffmann et
al., 2020a). Finally, the S proteins of all SARSWED variants tested facilitated cell-cell fusion
with similar (B.1.1.7) or slightly reduced (B.1.38hd P.1) efficiency as compared to WT S

protein (Fig. 3A,B).

Similar stability and entry kinetics of particlesbearing WT and variant S proteins

We next investigated whether the S proteins oSARS-CoV-2 variants showed altered
stability, which may contribute to the alleged m@msed transmissibility of the viral variants. For
this, we incubated S protein-bearing particleddifferent time intervals at 33°C, a temperature
that is present in the nasal cavity, and subsetjuassessed their capacity to enter target cells.
The efficiency of cell entry markedly decreasedmnupwrubation of particles at 33°C for more
than 8 h, but no appreciable differences were oksdietween particles bearing S proteins from

SARS-CoV-2 WT or variants (Fig. 4A).
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Although the S proteins of the SARS-CoV-2 variatitnot differ markedly from WT S
protein regarding stability and entry efficiendyey might mediate entry with different kinetics
as compared to WT S protein. To investigate thisslity, we incubated target cells with S
protein-bearing particles for the indicated timeimals, removed unbound virus by washing and
universally determined entry efficiency at 16 htgasculation. Entry efficiency increased with
the time available for particle adsorption to céllg no differences were observed between
particles bearing WT S protein or S protein fromRBAC0V-2 variants (Fig. 4B). Confirmation
of the result with lung cells is pending. Howewbe data available at present indicate that there
might be no major differences between WT SARS-Coafi@ SARS-CoV-2 variants B.1.1.7,

B.1.351 and P.1 regarding S protein stability amityekinetics.

Soluble ACE2, TMPRSS2 inhibitors and membrane fusion inhibitor s block entry

Soluble ACE2 (sACE2) blocks SARS-CoV-2 entry inel€ and is in clinical development for
COVID-19 therapy (Monteil et al., 2020). Similartyre clinically proven protease inhibitors
Camostat and Nafamostat block TMPRSS2-dependenBSa&/-2 cell entry and their potential
for COVID-19 treatment is currently being assegstmffmann et al., 2020b; Hoffmann et al.,
2020c). Finally, the membrane fusion inhibitor Ekxid its optimized lipid-conjugated
derivative EK-1-C4 block SARS-CoV-2 entry by pretirg conformational rearrangements in
the S protein that are required for membrane fu§iam et al., 2020). We asked whether entry
driven by the S proteins of the B.1.1.7, B.1.35d Bril variants can be blocked by these
inhibitors. All inhibitors were found to be actie¢though entry mediated by the S proteins of the
SARS-CoV-2 variants was slightly more sensitivélackade by SACE2 as compared to WT S
protein (Fig. 5). In addition, entry driven by tBeprotein of the P.1 variant was slightly more

sensitive to blockade by EK-1 and EK-1-C4 as corgban the other S proteins tested (Fig. 5).

9



221 These results suggest that SACE2, TMPRSS2 inhshénd membrane fusion inhibitors will be
222 active against the B.1.1.7, B.1.351 and P.1 vasiant

223

224 Resistance against antibodies used for COVID-19 treatment

225 A cocktail of monoclonal antibodies (REGN-COV2, s@ting of Casirivimab and Imdevimab)
226  and the monoclonal antibody Bamlanivimabck SARS-CoV-2 WT infection (Fig. S2) and

227  have received EUA for COVID-19 therapy. We analywmdtbther these antibodies can inhibit
228 entry driven by the S proteins of the B.1.1.7, B51 and P.1 variants. Entry driven by the S
229  proteins of all variants was comparably inhibitgdimdevimab while entry driven by the S

230 proteins of the B.1.351 and P.1 variants was phrti@sistant against Casirivimab (Fig. 6). A
231 cocktail of both antibodies (REGN-COV?2) efficienthhibited entry mediated by the S proteins
232 of all variants. Finally, entry mediated by ther8tpins of the B.1.351 and P.1 variant was

233 completely resistant to REGN10989 and Bamlanivinvabe the S protein of the B.1.1.7 variant
234  was efficiently blocked by all antibodies testedy(B). Collectively, these data indicate that

235  single antibodies with EUA might provide incomplé@asirivimab) or no (Bamlanivimab)

236  protection against the B.1.351 and P.1 variants.

237

238  Reduced neutralization by plasma from convalescent patients

239  SARS-CoV-2 infection can induce the production efitnalizing antibodies and these antibodies
240 are believed to contribute to protection from regtion (Rodda et al., 2020; Wajnberg et al.,
241 2020). Therefore, it is important to elucidate wieetB.1.1.7, B.1.351 and P.1 variants are

242  efficiently neutralized by antibody responses inv@escent COVID-19 patients. We addressed
243  this question using plasma collected from COVIDp&8ients undergoing intensive care at

244  Gottingen University Hospital, Germany (Table Slhe plasma samples had been pre-screened
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for neutralizing activity against WT S protein, amg@lasma sample with no neutralizing activity
was included as negative control. Spread of SARS-Zeariants in Germany was very limited
at the time of sample collection, indicating thetusn antibodies were induced in response to
SARS-CoV-2 WT infection.

All plasma samples with known neutralizing actiitp15, 18, 20, 22, 23, 24, 27, 33, 51)
efficiently reduced entry driven by WT S proteinileithe control plasma (ID16) was inactive
(Fig. 7A and Fig. S3). Blockade of entry driventhg S protein of the B.1.1.7 variant was
slightly less efficient (Fig. 7A and Fig. S3). lordrast, seven out of nine plasma samples
inhibited entry driven by the S proteins of the B3Il and P.1 variants less efficiently as
compared to entry driven by WT S protein. Thesealtesuggest that individuals previously
infected with WT SARS-CoV-2 might only be partiaplyotected against infection with B.1.351

and P.1 variants of SARS-CoV-2.

Reduced neutralization by sera from BNT 162b2-vaccinated individuals

The vaccine BNT162b2 is based on an mRNA that exxéat the viral S protein and is highly
protective against COVID-19 (Polack et al., 2020hile the S protein harbors T-cell epitopes
(Grifoni et al., 2020; Peng et al., 2020), effidcipnotection is believed to require the inductidn o
neutralizing antibodies. We determined the neuiradi activity of sera from 15 donors
immunized twice with BNT162b2 (Table S2). All seféiciently inhibited entry driven by the

WT S protein and inhibition of entry driven by tBeprotein of the B.1.1.7 variant was only
slightly reduced (Fig. 7B and Fig. S3). In contrds out of 15 sera showed a markedly reduced
inhibition of entry driven by the S proteins of tBel.351 and P.1 variants (Fig. 7B), although it

should be stated that all sera completely inhibéetly at the lowest dilution tested. In sum, these
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results suggest that BNT162b2 may offer less roprgtection against infection by the B.1.351

and P.1 variants as compared to SARS-CoV-2 WT.
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DISCUSSION
The COVID-19 pandemic has taken a major toll on &iinealth and prosperity. Non-
pharmaceutic interventions are currently the mastrument to combat the pandemic but are
associated with a heavy burden on economies. Rir@e@ccines became recently available and
might become a game changer — it is hoped thaiefti vaccine roll out might allow to attain
herd immunity in certain countries in the secontl ®&2021. The recent emergence of SARS-
CoV-2 variants B.1.1.7, B.1.351 and P.1 that harbotations in the major target of neutralizing
antibodies, the viral S protein, raises the quasttbether vaccines available at present will
protect against infection with these viruses. Sanhyl it is largely unclear whether antibody
responses in convalescent patients protect agasistection with the new variants. The results
of the present study suggest that SARS-CoV-2 viiBrl.351 and P.1 are partially
(Casirivimab) or fully (Bamlanivimab) resistant aggt antibodies used for COVID-19 treatment
and are inhibited less efficiently by convalesqaasma or sera from individuals immunized with
the mMRNA vaccine BNT162b2. These results suggeststinategies relying on antibody-
mediated control of SARS-CoV-2 infection might lmempromised by resistance development.
The increased transmissibility postulated forBht.1.7, B.1.351 and P.1 variants (da
Silva Francisco et al., 2021; Leung et al., 202Wéavida et al., 2021) raises the possibility that
these viruses might exhibit altered host-cell imtgions or particle stability. The present study
demonstrates that S proteins of SARS-CoV-2 WT,B71 B.1.351 and P.1 mediate cell-cell and
virus-cell fusion with roughly comparable efficignand entry kinetics. Similarly, particles
bearing S protein of WT and variant SARS-CoV-2 wlid differ appreciably in stability although
we cannot exclude that examination of more timatgsainight have revealed minor differences.
In keeping with these findings, entry driven by Sheroteins of SARS-CoV-2 WT and variants

was efficiently blocked by inhibitors targeting tbellular factors ACE2 and TMPRSS2, which
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339

are critical for lung cell entry. Similarly, memim&fusion inhibitors blocked entry driven by WT
S protein and S proteins of the B.1.1.7, B.1.35d 4. variants with similar efficiency. These
results await confirmation with authentic virus dadg cells, in which entry kinetics might
differ. However, the data available at present diopoint towards major differences in host cell
entry and stability of SARS-CoV-2 and variants B.Z, B.1.351 and P.1.

Although host-cell interactions underlying viraitey might not differ markedly between
SARS-CoV-2 WT and the B.1.1.7, B.1.351 and P.lavds, major differences in susceptibility to
antibody-mediated neutralization were observedryEhiven by the S proteins of the B.1.351
and P.1 variants was only partially inhibited bysiCiaimab (REGN10933), in keeping with
mutations present in the S protein of the B.1.3td R.1 variants being located at the antibody
binding site (Fig. S2). Combining Casirivimab antdevimab (REGN10987) within an antibody
cocktail with EUA (REGN-COV?2) restored efficienthibition, suggesting that REGN-COV2
should be suitable for treatment of patients irddatith variant B.1.351 or P.1. In contrast,
Bamlanivimab (Baum et al., 2020a; Baum et al., 20Zthen et al., 2020; Gottlieb et al., 2021),
another antibody with EUA for COVID-19 treatmerdiléd to block entry driven by the S
proteins of B.1.351 and P.1. This finding is inesgmnent with the E484K mutation being located
in the antibody binding site and suggests that Bamimab should not be used for treatment of
patients infected with the B.1.351 and P.1 variants

Vaccination is key to global efforts to contain @®VID-19 pandemic. The mRNA-
based vaccine BNT162b2 encodes the viral S prataihis highly efficacious. Closely related
vaccines as well as vector-based vaccines follcanetit is believed that these vaccines mainly
protect by inducing neutralizing antibody respon&siilarly, neutralizing antibody responses
are believed to contribute to protection of congaét COVID-19 patients against reinfection

and disease. The present study showed that emggndsy the S proteins of the B.1.351 and P.1
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363

variants was less susceptible to inhibition by ggaama from COVID-19 patients and
BNT162b2 vaccinated individuals as compared toyaiven by WT S protein. It should be
noted that all plasma and sera tested completklited entry at the lowest dilution tested and
that T cell responses will contribute to controlSKRS-CoV-2 infection, particularly in re-
infected convalescent patients (Grifoni et al.,@02eng et al., 2020). Nevertheless, the markedly
reduced sensitivity to antibody-mediated neutréitimasuggests that convalescent and vaccinated
individuals might not be fully protected againdertion by the B.1.351 and P.1 variants. Such a
scenario would be in keeping with preliminary inf@tion suggesting that a vaccine based on the
S protein might provide less effective protectiorSouth Africa as compared to the US
(Callaway and Mallapaty, 2021). On a more genenal| our findings suggest that the interface
between the SARS-CoV-2 S protein and ACE2 exhhigh plasticity, favoring emergence of
escape variants.

Our finding that entry driven by the S proteirtloé B.1.1.7 variant can be efficiently
inhibited by antibodies induced upon infection &adcination is in agreement with those of
Muik and colleagues, who reported that pseudopestizearing the B.1.1.7 S protein are
efficiently neutralized by sera from BNT162b2 vaated individuals (Muik et al., 2021). Xie
and coworkers found that authentic SARS-CoV-2 Ingativo mutations present in the S protein
of the B.1.1.7 variant (69/70-deletion + N501Y) vedil robustly neutralized by antibodies
induced by vaccination with BNT162b2. Similarly,utelization of a virus bearing changes
found in the RBD of the B.1.351 and P.1 variané¥34K + N501Y) was moderately reduced
(Liu et al., 2021; Wang et al., 2021; Xie et aD22), again in keeping with our findings.

We present, to the best of our knowledge, the dids-by-side comparison of host cell
entry of variants B.1.1.7, B.1.351 and P.1 anchitgbition by small molecules and antibodies.

Although our results await confirmation with auttiefSARS-CoV-2, they suggest that evasion
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of antibody responses does not account for thel igmiead of B.1.1.7. In contrast, our findings
indicate that the B.1.351 and P.1 variants mighaltle to spread in convalescent patients or
BNT162b2 vaccinated individuals and thus constiauteslevated threat to human health.

Containment of these variants by non-pharmacent@rventions is an important task.

LIMITATIONSOF THE STUDY

Our study has the following limitations: We usedicalar stomatitis virus pseudotyped with the
S proteins of SARS-CoV-2 variants to study SARS-&b¥ntry and its inhibition. Although this
surrogate model is believed to faithfully mimiclceahtry of SARS-CoV-2, our results await
formal confirmation with authentic virus. Furthemaphost cell entry and its blockade were
studied using immortalized cell lines and thesdyaea should be extended to primary cell

cultures within future studies.
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FIGURE LEGENDS

Figure 1. Schematic overview of the S proteins from the SARS-CoV-2 variants under study
The location of the mutations in the context okegorotein domain organization is shown in the
upper panel. RBD = receptor binding domain, TDangmembrane domain. The location of the
mutations in the context of the trimer spike pnotgédomain is shown lower panel. Color code:
light blue = S1 subunit with RBD in dark blue, greys52 subunit, orange = S1/S2 and S2’

cleavage sites, red = mutated amino acid residues.

Figure 2. Sproteinsfrom SARS-CoV-2 variantsdrive entry into human cell lines

(A) Directed expression of SARS-CoV-2 S proteinBRS-2-S) in A549-ACE2 cells leads to the
formation of syncytia. S protein expression wagdetd by immunostaining using an antibody
directed against a C-terminal HA-epitope tag. Rrexkare the data from one representative
experiment. Similar results were obtained in fotdgical replicates.

(B) The S proteins of the SARS-CoV-2 variants mediabust entry into cell lines. The
indicated cell lines were inoculated with pseudetyparticles bearing the S proteins of the
indicated SARS-CoV-2 variants or wildtype (WT) SARSV-2 S. Transduction efficiency was
guantified by measuring virus-encoded luciferaseviéi¢ in cell lysates at 16-20 h post
transduction. Presented are the average (meanjrdataix biological replicates (each
conducted with technical quadruplicates). Erroshadicate the standard error of the mean
(SEM). Statistical significance was analyzed by-wag analysis of variance (ANOVA) with

Dunnett’s posttest. See also Figure S1.

Figure 3. The Sproteins of the SARS-CoV-2 variantsdriverobust cell-cel fusion
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(A) Quantitative cell-cell fusion assay. S protexpressing effector cells were mixed with ACE2
or ACE2/TMPRSS2 expressing target cells and cdlifigsion was analyzed by measuring
luciferase activity in cell lysates. Presentedthesaverage (mean) data from four biological
replicates (each performed with technical tripsat Error bars indicate the SEM. Statistical
significance was analyzed by one-way ANOVA with Datt’s posttest.

(B) Qualitative fusion assay. A549-ACE?2 (left) aiB49-ACE2/TMPRSS2 (right) cells were
transfected to express the indicated S proteinedasiral protein) along with DsRed. At 24 h
posttransfection, cells were fixed and analyzedHerpresence of syncytia by fluorescence
microscopy (magnification: 10x). Presented areeg@ntative images from a single experiment.

Data were confirmed in three additional experiments

Figure4. Particles bearing the S proteins of SARS-CoV-2 variants exhibit similar stability

and entry kinetics

(A) Particles bearing the indicated S proteins wecebated for different time intervals at 33 °C,
snap frozen, thawed and inoculated onto Vero delitry of particles that were frozen
immediately was set as 100%.

(B) Particles bearing the indicated S proteins vilecabated for indicated time intervals with
Vero cells. Subsequently, the cells were washedwsif¢rase activity determined. Transduction
measured without particle removal by washing wasisd 00%.

For both panels, the average (mean) data from thobegical replicates (each performed with
technical quadruplicates) is presented. Error imatisate the SEM. Statistical significance was

analyzed by two-way ANOVA with Dunnett’s posttest.
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638  Figureb5. Entry driven by the Sproteins of the SARS-CoV-2 variants can be blocked with

639  soluble ACE2, protease inhibitorstargeting TM PRSS2 and a membrane fusion inhibitor

640  Top row, left panel: S protein-bearing particlegevmcubated with different concentrations of
641  soluble ACE2 (30 min, 37 °C) before being inocullad&to Caco-2 cells. Top row, middle and
642  right panel: Caco-2 target cells were pre-incubatgl different concentrations of serine

643  protease inhibitor (Camostat or Nafamostat; 1 i, G)/before being inoculated with particles
644  harboring the indicated S proteins. Bottom rowhlmdnels: The peptidic fusion inhibitor EK-1
645 and its improved lipidated derivate EK-1-C4 wereuibated with particles at indicated

646  concentrations (30 min, 37 °C) and then added tmw@acells. All panels: Transduction

647  efficiency was quantified by measuring virus-enabtieiferase activity in cell lysates at 16-20 h
648  posttransduction. For normalization, inhibition$ARS-CoV-2 S protein-driven entry in samples
649  without soluble ACE2 or inhibitor was set as 0 %ed@nted are the average (mean) data from
650 three biological replicates (each performed withtecal triplicates [EK-1, EK-1-C4] or

651  quadruplicates [soluble ACE2, Camostat, Nafamagstatfor bars indicate the SEM. Statistical
652  significance was analyzed by two-way ANOVA with Dwtt's posttest.

653

654 Figure®6. Cel entry mediated by the S proteins of SARS-CoV-2 variantsB.1.351 and P.1is
655  partially or fully resistant to inhibition by monoclonal antibodieswith EUA

656 Pseudotypes bearing the indicated S proteins wetdated (30 min, 37 °C) with different
657  concentrations of control antibody (higG), fourfeient monoclonal antibodies (Casirivimab,
658 Imdevimab, REGN10989, Bamlanivimab) or a combimatb Casirivimab and Imdevimab, as
659  present in the REGN-CoV2 antibody cocktail, befoeeng inoculated onto target Vero cells.
660 Transduction efficiency was quantified by measusiimgs-encoded luciferase activity in cell

661 lysates at 16-20 h posttransduction. For normadinatnhibition of S protein-driven entry in
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samples without antibody was set as 0 %. Presaméethe data from a single experiment
performed with technical triplicates. Data werefaomed in a separate experiment. Error bars

indicate standard deviation (SD). See also Figare S

Figure7. Entry driven by the S proteins of SARS-CoV-2 variants B.1.351 and P.1 shows
reduces neutralization by convalescent plasma and sera from BNT 162b2 vaccinated
individuals

Pseudotypes bearing the indicated S proteins wetdated (30 min, 37 °C) with different
dilutions of plasma derived from COVID-19 patie(®s see also Table S1) or serum from
individuals vaccinated with the Pfizer/BioNTech gexe BNT162b2 (obtained 13-15 days after
the second dose) (B, see also Table S2) and intedubamto Vero target cells. Transduction
efficiency was quantified by measuring virus-enabtieeiferase activity in cell lysates at 16-20 h
posttransduction (please see Figure S3 for mogelsleind used to calculated the plasma/serum
dilution factor that leads to 50% reduction in $tpm-driven cell entry (neutralizing titer 50,
NT50). Presented are the average (mean) NT50 franindependent experiments. The lines in
the scatter plots indicate the median NT50, whikeliars indicate the mean NT50. Identical
plasma/serum samples are connected with lineibah graphs and the numbers in brackets
indicate the average (mean) reduction in neutrtadizasensitivity for the S proteins of the

respective SARS-CoV-2 variants. Statistical sigaifice was analyzed by paired Student’s t-test.
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Supplemental Figure Titlesand Legends

Figure S1. Graphical summary of the generation and use of VSV pseudotype particles
bearing SARS-2-S and representative transduction data (related to Figure 2)

(A) Schematic illustration of how SARS-2-S-bear@V pseudotype particles are generated
and used for transduction experiments.

(B) Raw transduction data (cps, counts per secbod) a representative experiment. Presented
are the data from a single representative expetiroenducted with technical quadruplicates.
Error bars indicate the SD. Bald pseudotype pagitiearing no viral glycoprotein and particles

harboring VSV-G served as negative (assay backghoamd positive controls, respectively.

Figure S2. Location of SARS-2-S RBD mutations K417N/T, E484K and N501Y with respect

to the binding interface of the REGN-COV2 antibody cocktail (A) and the monoclonal
antibod Bamlanivimab (B) (related to Figure 6)

The protein models of the SARS-2-S receptor-bindiognain (RBD, blue) in complex with
antibodies Casirivimab (orange) and Imdevimab (greeere constructed based on the 6XDG
template (Hansen et al., 2020), while the proteadehs of the SARS-2-S RBD in complex with
antibody Bamlanivimab (purple) were based on thaN template (Jones et al., 2020). Residues

highlighted in red indicate amino acid variationsarid in emerging SARS-CoV-2 variants.

Figure S3. Representative neutralization data (related to Figure7)
Pseudotypes bearing the indicated S proteins werebated (30 min, 37 °C) with different
dilutions of plasma derived from COVID-19 patieiigg or serum from individuals vaccinated

with the Pfizer/BioNTech vaccine BNT162b2 (obtainE8t15 days after the second dose) (B)
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and inoculated onto Vero target cells. Transduaosficiency was quantified by measuring virus-
encoded luciferase activity in cell lysates at DehR2posttransduction. Presented are the data from
a single representative experiment conducted withriical triplicates (results were confirmed in
a separate biological replicate). For normalizgtiohibition of S protein-driven entry in samples
without plasma/serum was set as 0 %. Error bansatelthe SD. The data were further used to
calculated the plasma/serum dilution that leadSQ% reduction in S protein-driven cell entry
(neutralizing titer, NT50, shown in Figure 7). Gifta, serum BNT-10 was excluded from further

analysis, as its extraordinary high neutralizinjvéty precluded a reliable NT50 determination.
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STAR METHODS

RESOURCE AVAILABILITY

LEAD CONTACT
Requests for material can be directed to Markudriinfin (mhoffmann@dpz.eu) and the lead

contact, Stefan Péhlmann (spoehimann@dpz.eu).

MATERIALSAVAILABILITY
All materials and reagents will be made availalgeruinstallment of a material transfer

agreement (MTA).

DATA AND CODE AVAILABILITY

The study did not generate unique datasets or code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cdll culture

All cell lines were incubated at 37 °C in a humielif atmosphere containing 5% CO2. All media
were supplemented with 10% fetal bovine serum (F&i&hrom or GIBCO), 100 U/ml of
penicillin and 0.1 mg/ml of streptomycin (PAN-Biate. 293T (human, female, kidney; ACC-
635, DSMZ, RRID: CVCL_0063), 293T cells stably exgging ACE2 (293T-ACEZ2), Vero
(African green monkey, female, kidney; CRL-1586,20, RRID:CVCL_0574; kindly provided
by Andrea Maisner, Institute of Virology, Philippliversity Marburg, Marburg, Germany) and

Vero-TMPRSS2 cells (Hoffmann et al., 2020b) werkivated in Dulbecco’s modified Eagle
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medium (DMEM). Vero-TMPRSS2 cells additionally raee puromycin (0.5 pg/ml,
Invivogen). A549 (human, male, lung; CRM-CCL-185/@C, RRID:CVCL_0023; kindly
provided by Georg Herrler), A549-ACE2 and A549-ACBZPRSS2 cells were cultivated in
DMEM/F-12 Medium with Nutrient Mix (Thermo Fishectentific). A549-ACE2 cells further
received 0.5 pg/ml puromycin, while A549-ACE2/TMPEScells were cultivated in the
presence of 0.5 pg/ml puromycin and 1 pg/ml blaticCaco-2 (human, male, intestine; HTB-
37, ATCC, RRID:CVCL_0025) and Calu-3 cells (humarale, lung; HTB-55, ATCC,
RRID:CVCL_0609; kindly provided by Stephan Ludwigstitute of Virology, University of
Munster, Germany) were cultivated in minimum ess¢medium supplemented with 1x non-
essential amino acid solution (from 100x stock, PAAd 1 mM sodium pyruvate (Thermo
Fisher Scientific). 293T cells that stably exprA§&E2 were generated by retroviral (murine
leukemia virus, MLV) transduction and selectiorpafental 293T cells with puromycin (4 pg/mi
for initial selection and 0.5 pg/ml for sub-cultug). Similarly, we generated A549 cells stably
expressing ACE2 (A549-ACEZ2). A549 cells stably egsing ACE2 and TMPRSS2 (A549-
ACE2/TMPRSS2) were obtained by retroviral transucof A549-ACE?2 cells and selection
with blasticidin (6 pg/ml for initial selection aridug/ml for sub-culturing). Authentication of
cell lines was performed by STR-typing, amplificatiand sequencing of a fragment of the
cytochrome c oxidase gene, microscopic examinaialior according to their growth

characteristics. Further, cell lines were routirtelsted for contamination by mycoplasma.

METHODSDETAILS

Expression plasmids and transfection of cell lines
Expression plasmids for DsRed (Hoffmann et al.,G)2vesicular stomatitis virus (VSV,

serotype Indiana) glycoprotein (VSV-G) (Brinkmartrak, 2017), SARS-S (derived from the
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Frankfurt-1 isolate; containing a C-terminal HAtepie tag) (Hoffmann et al., 2020b), SARS-2-S
(codon-optimized, based on the Wuhan/Hu-1/201%isplwith a C-terminal truncation of 18
amino acid residues or with a C-terminal HA epittgog) (Hoffmann et al., 2020b), angiotensin-
converting enzyme 2 (ACE2) (Hoffmann et al., 20I3)|PRSS2 (Heurich et al., 2014), Gal4-
TurboGFP-Luc and Vpl16-Gal4 (Hornich et al., 202&ysvpreviously described. have been
described elsewhere. In order to generate expressictors for S proteins from emerging SARS-
CoV-2 variants, we introduced the required mutatioro the parental SARS-2-S sequence by
overlap extension PCR. Subsequently, the respegpiga reading frames were inserted into the
pCG1 plasmid (kindly provided by Roberto Cattandayo Clinic College of Medicine,
Rochester, MN, USA), making use of the unique Bamtl Xbal restriction sites. Further, we
cloned the coding sequence for human ACE2 intgp@€XIP plasmid (Brass et al., 2009),
yielding pQCXIP_ACE2. For the generation of catlds stably overexpressing human
TMPRSS2 and/or human ACE2 we produced MLV-baseatsthaction vectors using the
pQCXIBI_cMYC-hTMPRSS2 (Kleine-Weber et al., 2018)pQCXIP_ACE?2 expression vectors
in combination with plasmids coding for VSV-G and.WtGag/Pol (Bartosch et al., 2003). In
order to obtain the expression vector for solubisman ACE2 harboring the Fc portion of human
immunoglobulin G (sol-ACE2-Fc), we PCR amplifie@ tbequence coding for the ACE2
ectodomain (amino acid residues 1-733) and cloniadol the pCG1-Fc plasmid ((Sauer et al.,
2014), kindly provided by Georg Herrler, Universif/Veterinary Medicine, Hannover,
Germany). Sequence integrity was verified by seqgnusing a commercial sequencing service
(Microsynth Seqlab). Specific cloning details (eprimer sequences and restriction sites) are
available upon request. Transfection of cells wasied out by the calcium-phosphate method or
by using polyethylenimin, Lipofectamine LTX (Thermxtsher Scientific) or Transit LT-1

(Mirus).
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Analysisof Sprotein expression by fluor escence microscopy

A549-ACEZ2 cells that were grown on coverslips weaasfected with plasmids encoding SARS-
CoV-2 S protein variants with a C-terminal HA epiéotag or empty expression vector (control).
At 24 h posttransfection, cells were fixed with 4p&raformaldehyde solution (30 min, room
temperature), washed and incubated (15 min, roompéeeature) with phosphate-buffered saline
(PBS) containing 0.1 M glycine and permeabilizedreptment with 0.2 % Triton-X-100
solution (in PBS, 15 min). Thereafter, samples weashed and incubated for 1 h at room
temperature with primary antibody (anti-HA, mous&00, Sigma-Aldrich) diluted in PBS
containing 1 % bovine serum albumin. Next, the damwere washed with PBS and incubated
in the dark for 1 h at 4 °C with secondary antib@éliexa Fluor-568-conjugated anti-mouse
antibody, 1:750, Thermo Fisher Scientific). Finatlye samples were washed, nuclei were
stained with DAPI and coverslips were mounted anicroscopic glass slides with
Mowiol/DABCO. Images were taken using a Zeiss LSBI80nfocal laser scanning microscope

with ZEN imaging software (Zeiss).

Preparation of pseudotyped particles and transduction experiments

Rhabdoviral pseudotype particles were preparedrditgpto a published protocol (Kleine-

Weber et al., 2019). For pseudotyping we used lecegjon-deficient VSV vector that lacks the
genetic information for VSV-G and instead codestfav reporter proteins, enhanced green
fluorescent protein and firefly luciferase (FLU¢EV*AG-FLuc (kindly provided by Gert

Zimmer, Institute of Virology and Immunology, Mitt&iusern, Switzerland) (Berger Rentsch and
Zimmer, 2011). 293T cells transfected to expresgisired viral glycoprotein were inoculated

with VSV*AG-FLuc and incubated for 1 h at 37 °C before tleeutum was removed and cells
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were washed. Finally, culture medium containing-8#8V-G antibody (culture supernatant from
I1-hybridoma cells; ATCC no. CRL-2700) was addealldwing an incubation period of 16-18
h, pseudotype particles were harvested by collgttie culture supernatant, pelleting cellular
debris through centrifugation (2,000 x g, 10 mogm temperature) and transferring aliquots of
the clarified supernatant into fresh reaction tulsesmples were stored at -80 °C. For
transduction experiments, target cells were seed@8-well plates, inoculated with the
respective pseudotype particles with comparabkctifity and further incubated. At 16-18 h
postinoculation, transduction efficiency was anatiiz=or this, the culture supernatant was
removed and cells were lysed by incubation for 39 ahroom temperature with Cell Culture
Lysis Reagent (Promega). Next, lysates were traresfénto white 96-well plates and FLuc
activity was measured using a commercial subs(Beetle-Juice, PJK; Luciferase Assay
System, Promega) and a plate luminometer (Hidesé&Prate Reader, Hidex or Orion |l
Microplate Luminometer, Berthold).

Depending on the experimental set-up target celfseudotype particles were pre-
incubated with different compounds. Target cellsenacubated with different concentrations of
serine protease inhibitor (Camostat or Nafamo€&tato-2, 1 h at 37 °C). Alternatively,
pseudotype particles were pre-incubated with défieconcentrations of either sol-ACE2-Fc,
fusion inhibitor (EK-1 or EK-1-C4), monoclonal amtidies (Casirivimab, Imdevimab, REGN-
COV2 [Casirivimab and Imdevimab], REGN10989, Bamtanab), or plasma/sera from
COVID-19 patients or vaccinated (Pfizer/BioNTecltsiae BNT162b2) individuals (30 min at
37 °C). S protein stability was analyzed as follppseudotype particles were incubated for
different time intervals at 33 °C the snap-frozed atored at -80 °C until all samples were
collected. Thereafter, samples were thawed andilated onto target cells and incubated as

described above. For the investigation of the espiged of S protein-bearing pseudotypes, the
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respective particles were inoculated on targes@ild adsorbed for different time intervals

before the inoculum was removed and cells were aésaind incubated with fresh medium.

Production of soluble ACE2 (sol-ACE2-Fc)

293T cells were grown in a T-75 flask and trangdatith 20 pg of sol-ACE2-Fc expression
plasmid. At 10 h posttransfection, the medium vegdaced and cells were further incubated for
38 h before the culture supernatant was colleateldcantrifuged (2,000 x g, 10 min, 4 °C). Next,
the clarified supernatant was loaded onto Vivagpatein concentrator columns with a
molecular weight cut-off of 30 kDa (Sartorius) asehtrifuged at 4,000 x g, 4 °C until the sample
was concentrated by a factor of 20. The concemtrsae ACE2-Fc was aliquoted and stored at -

80 °C until further use.

Collection of serum and plasma samples

Sera from individuals vaccinated with BioNTech/efixaccine BNT162b2 were obtained 13-15
days after the second dose. The study was apptyvtdee Ethic committee of UIm university
(vote 31/21 — FSt/Sta). Collection of plasma sasfriem COVID-19 patients treated at the
intensive care unit was approved by the Ethic catemiof the University Medicine Gottingen
(Septimmun Study 25/4/19 U). For collection of pias Cell Preparation Tube (CPT)
vacutainers with sodium citrate were used and pasas collected as supernatant over the
PBMC layer. For vaccinated patients, blood wasectdld in S-Monovette® Serum Gel tubes
(Sarstedt). Subsequently, the plasma and serumleampre incubated at 56°C for 30 min to
inactivate putative infectious virus and for coregent plasma pre-screening for detection of
neutralizing activity was performed on Vero76 celiéng SARS-2-S- and VSV-G bearing

pseudotypes as control, normalized for equal infigt
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877  Qualitative cell-cell fusion assay

878 AbB49-ACE2 or A549-ACE2/TMPRSS2 cells were transtelotvith DsRed expression plasmid
879  along with either expression vector for wildtypenautant SARS-2-S, SARS-S or empty plasmid.
880 At 24 h posttransfection, cells were fixed with 4p#raformaldehyde solution (30 min, room

881 temperature), washed and nuclei were stained witRIDNext, cells were washed again with

882 PBS and images were taken using a Zeiss LSM80®cahfaser scanning microscope with ZEN
883 imaging software (Zeiss).

884

885  Quantitative cell-cell fusion assay

886  293T target-cells were seeded in a 48-well plat@0a200 cells/well and transfected with Gal4-
887  TurboGFP-Luciferase expression plasmid (Gal4-Tuf®&uc) as well as expression plasmid
888 for ACE2 alone or in combination with TMPRSS2 (7alio). 293T effector-cells were seeded in
889 a 6-well dish at 70-80% confluency and transfeeted the Vp16-Gal4 expression plasmid as
890 well as expression plasmid for WT or mutant SARS;BARS-S or empty plasmid. At 24h

891  posttransfection, effector-cells were detacheddsyspending them in culture medium and added
892 to the target-cells in a 1:1 ratio. After 24 h fecase activity was analyzed using the Beetle-Juice
893  Luciferase Assay according to manufacturer’s irdioms and a Biotek Synergy 2 plate reader.
894

895  Sequence analysisand protein models

896 S protein sequences of emerging SARS-CoV-2 S viariari.1.7 (EPI_ISL_601443), B.1.351

897 (EPI_ISL_700428) and B.1.1.28 (EPI_ISL_792683) wetdeved from the GISAID (global

898 initiative on sharing all influenza data) databéséps://www.gisaid.org/). Protein models are

899 based on PDB: 6XDG (Hansen et al., 2020) or 7L3M€3 et al., 2020), or a template generated
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by modelling the SARS-2-S sequence on a publishestat structure (PDB: 6XR8,(Cai et al.,
2020)), using the SWISS-MODEL online tool (httpsaissmodel.expasy.org/), and were

generated using the YASARA software (http://wwwaasorg/index.html).

QUANTIFICATION AND STATISTICAL ANALYSIS

The presented data either show (i) results fromlsirepresentative experiment (conducted with
technical triplicates or quadruplicates) that wesefirmed in at least one additional biological
replicate or (ii) average (mean) data from thretoor biological replicates (conducted with
technical triplicates or quadruplicates).

Data analysis was performed using Microsoft Exegbart of the Microsoft Office software
package (version 2019, Microsoft Corporation) amdp@Pad Prism 8 version 8.4.3 (GraphPad
Software). Data normalization was done as follafysSfo compare efficiency of cell entry driven
by the different S protein variants under studgnsduction was normalized against SARS-CoV-
2 S WT (set as 100%)); (ii) For experiments invegtigy inhibitory effects, transduction was
normalized against a reference sample (e.g., dené@ted cells or pseudotypes, set as 0%
inhibition). Serum dilutions the cause a 50 % reiduncof transduction efficiency (neutralizing
titer 50, NT50), were calculated using a non-linegression model (inhibitor vs. normalized
response, variable slope). Statistical significamas tested by one- or two-way analysis of
variance (ANOVA) with Dunnett’s post-hoc test, oraired student’s t-test. Orfiwvalues of
0.05 or lower were considered statistically sigrifit (P > 0.05, not significant [ns];<F0.05, *;
P<0.01, **; P<0.001, ***). Specific details on the statisticabkt and the error bars (standard

deviation, SD; standard error of the mean, SEM)jradieated in the figure legends.
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Supplemental Table Titlesand L egends

Table S1: COVID-19 patient data (related to Figure 7).

Table S2. BNT162b2-vaccinated patient data (related to Figure 7). Serological data shows
antibody titer against Spike (IgG, IgA) and Nuclepsid (NCP, IgG) protein measured by
Euroimmun-ELISA, values are given as baseline-cbece OD ratios compared to a calibrator.
For all analytes, a ratio < 0.8 was considerecetodn-reactive or negative. An OD-ratic>01.1

was considered to be positive for all three analyte
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SARS-CoV-2variants B.1.351 and P.1 escape from neutralizing antibodies

Highlights:

- B.1.1.7,B.1.351 and P.1 do not show augmented host cell entry

- Entry inhibitors under clinical evaluation block all variants

- B.1.351 and P.1 can escape from therapeutic antibodies

- B.1.351 and P.1 evade antibodies induced by infection and vaccination

eTOC-Blurb:

Comparison of the SARS-CoV-2 variants B.1.1.7, B.1.351 and P.1 show that inhibitors under clinical
evaluation are still effective in blocking entry though the B.1.351 and P.1 variants evade antibody
responses induced upon infection as well as vaccination and evade certain therapeutic antibodies.
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Figure 2
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Figure 3
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Figure 5
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Figure 6
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Figure 7
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