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Natalia Jura2,3,5,15,16, Klim Verba2,3,5, Mahdad Noursadeghi1, Pedro Beltrao2,12, Manolis Kellis9,10, 
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Emergence of SARS-CoV-2 variants of concern (VOCs) suggests viral adaptation to 
enhance human-to-human transmission1,2. Although much effort has focused on 
characterisation of spike changes in VOCs, mutations outside spike likely contribute 
to adaptation. Here we used unbiased abundance proteomics, phosphoproteomics, 
RNAseq and viral replication assays to show that isolates of the Alpha (B.1.1.7) variant3 
more effectively suppress innate immune responses in airway epithelial cells, 
compared to first wave isolates. We found that Alpha has dramatically increased 
subgenomic RNA and protein levels of N, Orf9b and Orf6, all known innate immune 
antagonists. Expression of Orf9b alone suppressed the innate immune response 
through interaction with TOM70, a mitochondrial protein required for RNA sensing 
adaptor MAVS activation. Moreover, the activity of Orf9b and its association with 
TOM70 was regulated by phosphorylation. We propose that more effective innate 
immune suppression, through enhanced expression of specific viral antagonist 
proteins, increases the likelihood of successful Alpha transmission, and may increase 
in vivo replication and duration of infection4. The importance of mutations outside 
Spike in adaptation of SARS-CoV-2 to humans is underscored by the observation that 
similar mutations exist in the Delta and Omicron N/Orf9b regulatory regions.

Innate immunity exerts strong selective pressure during viral transmis-
sion5–7 and impacts COVID-19 outcomes8–10. We hypothesised that Alpha 
may have evolved enhanced innate immune escape through adaptations 
outside spike. Naturally permissive Calu-3 human lung epithelial cells 
infected with wave-one (early-lineage) SARS-CoV-2 induce a delayed 
innate response, driven by activation of RNA sensors RIG-I and MDA511. 
Delayed responses, compared to rapid viral RNA replication, suggest 
effective early innate immune antagonism and evasion12,13. Here, we 
evaluated differences in replication and host responses to Alpha and 

wave-one isolates, B lineage BetaCoV/Australia/VIC01/2020 (VIC) 
and B.1.13 hCoV-19/England/IC19/2020 (IC19) (Fig. 1a). Input dose was 
normalised using viral genomic and subgenomic copies of envelope 
(E) RNA (RT-qPCR). Dose normalisation is critical because input viral 
genome levels correspond with innate immune activation at 24 hours 
post infection (hpi) in Calu-3 cells11. Equalising input genomes also allows 
assessment of infectivity per genome, which may vary between variants. 
We therefore confirmed that measurements of E copies and infectious 
virions in inocula correlate, and that the infectivity (infectious units per 
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E copy), is comparable between Alpha and wave-one isolates, support-
ing our dosing approach (Extended Data Fig. 1a).

Alpha shows reduced interferon induction
We found that Alpha and wave-one isolate replication was comparable 
at high and low multiplicity of infection (MOI), measuring intracel-
lular E copies, N protein positivity and infectious virion production 
(Fig. 1b-d and Extended Data Fig. 1b-d). We observed a small but 
significant increase in N positivity after Alpha infection (Fig. 1c and 
Extended Data Fig. 1c), which we explain later. As double-stranded RNA 
(dsRNA) intermediates are significant pathogen associated molecular 
patterns (PAMPs) sensed by the cell11,14, we also confirmed equivalent 
negative sense RNA synthesis for Alpha and first-wave isolates (Fig. 1e 
and Extended Data Fig. 1f), using strand-specific RT-qPCR (Extended 
Data Fig. 1e). Similarly, all isolates reached comparable levels of dsRNA 
positive cells from 8 hpi (Extended Data Fig. 1g,h). However, Alpha 
displayed a reduction in the total area of dsRNA per cell from 6 hpi, 
despite otherwise comparable replication (Fig. 1f). One possibility is 
that increased Alpha N protein levels (Fig. 1c, Extended Data Fig. 1c and 
Fig. 3) contribute to innate immune evasion by sequestering dsRNA, 
causing epitope masking. Alternatively, Alpha may induce less endog-
enous dsRNA production from transposable element expression that 
can contribute PAMPs to innate immune sensing15–17.

Identical levels of replication of each isolate enabled direct compari-
son of innate immune responses without confounding differences in the 
amount of virus. We found that Alpha infection led to lower IFNβ expres-
sion and secretion (Fig. 1g and Extended Data Fig. 2a), confirmed with 
three independent Alpha isolates (Fig. 1h). Differences in innate immune 
activation between variants did not translate to differences in viral 
replication in Calu-3 cells (Fig. 1). We therefore compared replication 
and innate immune activation in primary human airway epithelial cells 
(HAEs) differentiated at an air-liquid interface. Alpha showed enhanced 
replication in HAEs (Fig. 1i,j), with VIC replication being particularly 
limited (Extended Data Fig. 2b), likely due to absence of spike D614G, 
which confers a replication advantage in HAE and animal models18–20.

Thus, we compared innate replication and immune activation 
between Alpha and IC19 and found innate activation to be similar at 
72 hpi (Fig. 1k), despite substantially enhanced Alpha replication (Fig. 1i, 
j). Viral replication was not increased beyond input at early time points 
(24 hpi, Fig. 1i), therefore ISGs were not induced (not shown). However, 
when innate immune activation was normalised for viral replication at 
72 hpi, with the caveat that E copies may not fully represent the amount 
of viral dsRNA PAMP, we found that Alpha induced less IFNβ and ISG 
expression than IC19 per E copy (Extended Data Fig. 2d). This is con-
sistent both with enhanced innate immune antagonism by Alpha and 
with similar innate immune activation in Fig. 1k since Alpha replicates 
more efficiently in these cells.

As IFN sensitivity correlates with transmission of other pandemic 
viruses5,21, we measured IFNβ sensitivity. Alpha was consistently less 
IFNβ-sensitive over a wide dose range compared to VIC (Extended Data 
Fig. 2c). Interestingly, IC19 showed a similar reduction in IFNβ sensitivity 
as Alpha (Extended Data Fig. 2c) perhaps due to spike D614G, shared 
between IC19 and Alpha, associated with IFN resistance and enhanced 
entry efficiency22–25. Thus Alpha not only induces less IFNβ (Fig. 1g,h,k 
and Extended Data Fig. 2a) but is also less sensitive to inhibition.

Enhanced innate antagonism by Alpha
To compare global host responses to SARS-CoV-2 variants, we per-
formed mass spectrometry protein abundance and phosphorylation 
profiling and total RNAseq on Calu-3 cells at 10 and 24 hpi (Fig. 2a, 
Table S1). We observed infection-driven changes in RNA abundance 
and protein phosphorylation, with fewer differences in protein abun-
dance (Extended Data Fig. 3a). We observed poor correlation between 

protein phosphorylation and protein/mRNA abundance, suggesting 
that phosphorylation is driven independently from changes in protein 
abundance (Extended Data Fig. 3h).

Gene set enrichment analysis26 (GSEA) comparing Alpha to wave-one 
isolates highlighted innate immune system-related pathways among 
the top 5 terms for RNA, protein abundance, and phosphorylation 
(Fig. 2b, Extended Data Fig. 4a-c, Table S2). Top scoring terms were 
related to IFNa/β and cytokine/chemokine signalling, and most pre-
dominantly enriched for the RNA and protein phosphorylation datasets 
(Fig. 2b). In addition to lower IFNβ production (Fig. 1g,h and Extended 
Data Fig. 2a,d), Alpha infection resulted in reduced ISG expression in 
RNAseq (10 and 24 hpi) and protein abundance data (24 hpi) using an 
ISG set27 (Methods, Table S3, Fig. 2c,d, Extended Data Fig. 4d-f). For a 
subset of genes (CXCL10, IFIT2, MX1, IFIT1, and RSAD2 (Fig. 2e), as well 
as Type III IFN◻1 and IFN◻3 (Extended Data Fig. 5a), we confirmed 
reduced induction by multiple Alpha isolates (RT-qPCR).

We observed lower overall changes in protein phosphorylation early 
in infection for Alpha (Fig. 2f). Accordingly, GSEA revealed that pathways 
with reduced phosphorylation at 10 hpi, i.e. decreased activation, are 
related to innate immune responses (Extended Data Fig. 4c), consist-
ent with enhanced antagonism by Alpha. Strikingly, this was reversed 
at 24 hpi as Alpha caused enhanced phosphorylation later in infection 
(Extended Data Fig. 4c). This led us to investigate the differential regu-
lation of kinase signalling cascades, especially with respect to innate 
immune signalling. We used the phosphoproteomics data to estimate 
kinase activities for 191 kinases based on regulation of their known sub-
strates28,29 (Table S4), and grouped kinases according to their temporal 
dynamics (Extended Data Fig. 6a). Importantly, we did not observe any 
correlation between kinase activity and abundance in protein/RNA data-
sets (Extended Data Fig. 6b), suggesting kinase activity changes are not 
driven by corresponding kinase abundance changes. We identified 24 
kinases from the top enriched term (“Reactome innate immune system”; 
Fig. 2b), which we clustered by similar pathway membership (Fig. 2g and 
Methods). At 10 hpi, we observed decreased activity of TBK1, as well 
as protein kinase A, PRKDC, RET, AKT/mTOR, ERK, and JNK pathways. 
Given the central role of TBK1 in nucleic acid sensing, we evaluated 
known TBK1 substrates in greater detail to support the kinase analysis 
(Fig. 2g), confirming lower phosphorylation of known TBK1 substrates, 
including OPTN30 and RAB7A S7231, for Alpha compared to first-wave 
isolates at 10 hpi (Extended Data Fig. 6c). Intriguingly, at 24 hpi the activ-
ity of TBK1 and PRKDC kinases, as well as JNK, ERK, and PKA pathway 
kinases, was increased for Alpha compared to VIC (Fig. 2g), consistent 
with the increased phosphorylation in innate immune system-enriched 
pathway terms (Extended Data Fig. 4c). Persistently lower IFN induction 
by Alpha at 24 and 48 hpi (Fig. 1, Extended Data Fig. 1 and Fig. 2), despite 
higher TBK1 activation at 24 hpi, suggests antagonism downstream of 
TBK1, for example by increased expression of SARS-CoV-2 Orf6 (Fig. 3), 
which suppresses inflammatory transcription factor nuclear transport13. 
Concordantly, pro-inflammatory mRNA induction (IL6, IL8, CCL2 and 
TNF) and cytokine release (CXCL10, IL6 and CCL5) were significantly 
lower after Alpha infection, compared to wave-one isolates (Extended 
Data Fig. 5b-d). This is consistent with sustained reduction in cellular 
activation driven by inhibition of pathways upstream and downstream 
of TBK1 by Alpha. We did not observe differences in CCL3 induction, 
suggesting not all inflammatory pathways are differentially regulated 
between viruses (Extended Data Fig. 5c,d). Thus, Alpha-enhanced innate 
immune antagonism, as judged by decreased protein phosphorylation, 
is only observed at early time points post-infection, suggesting delayed 
activation of signalling pathways involved in viral recognition compared 
to early-lineage viruses.

Higher expression of innate antagonists by Alpha
We next examined the RNAseq and proteomic data for virus, seeking 
to understand the differences between Alpha and wave-one isolates 
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underlying the contrasting host responses (Fig. 3a, Extended Data 
Fig. 7a,b, Table S6, Table S7). As RNA replication, measured by genomic 
and subgenomic (sgRNA) E levels, was similar between variants (Fig. 1 
and Extended Data Fig. 1), we determined the levels of each sgRNA by 
selecting transcripts with the 5’ leader sequence, derived from the 5’ 
genomic RNA during sgRNA synthesis (Fig. 3a and Extended Data Fig. 7). 
Importantly, we observed similar levels of Nsp1/2/3 proteins translated 
from genomic RNA (Fig. 3a), again consistent with comparable levels of 
infection, enabling effective comparisons of transcription and protein 
expression between variants.

Strikingly, we found a large increase for the Alpha innate immune 
antagonist Orf9b (97 amino acid version33, encoded by N alternative 
reading frame), compared to wave-one isolates (Fig. 3a,b Extended Data 
Fig. 7b), with a corresponding increase in Orf9b sgRNA34 (over 80-fold 
for VIC, and 64.5-fold for IC19 at 24 hpi, Fig. 3a,b and Extended Data 
Fig. 7a). The increase in Alpha Orf9b transcription is likely influenced 
by nucleotide changes 28,280 GAT>CTA (conferring the N D3L sub-
stitution), which introduces an enhanced transcriptional regulatory 
sequence (TRS) upstream of Orf9b35 (Extended Data Fig. 8a-c). However, 
the overall amount of Alpha Orf9b sgRNA remains low (Fig. 3g). Thus, 
it is possible that increased Orf9b protein expression also derives from 
enhanced leaky scanning of the N sgRNA due to a single nucleotide 
deletion that weakens the Alpha N Kozak translation initiation context 
(position 28,271 in VIC and IC19, Fig. 6). The 3-nucleotide mutation 
leading to N D3L also modifies the Alpha Orf9b Kozak context, which 
could influence Orf9b translation efficiency36. We envisage a complex 
interplay between mutations resulting in enhancement of both Orf9b 
and N expression.

We also found Alpha had a significant increase in sgRNA and protein 
(24 hpi) for a second innate immune regulator, Orf612,13 (Fig. 3a,c and 
Extended Data Fig. 7a, Table S6). The specific mutations that influence 
Orf6 expression remain unclear. Additionally, we detected elevated 
sgRNA and protein levels in Alpha nucleocapsid (N), a third innate 
immune regulator37 (Fig. 3a,d). This is consistent with the increase in 
N-positive cells measured during Calu-3 infection (Fig. 1c and Extended 
Data Fig. 1c). We also observed enhancement of Orf3a, M, and Orf7b 
proteins at 24 hpi for Alpha, with only very modest changes observed 
at the RNA level (Fig. 3a and Extended Data Fig. 7a,c,d). We confirmed 
upregulation of Alpha Orf9b, N and Orf6 sgRNA using RT-qPCR (Fig. 3e) 
and heightened expression of Alpha Orf6 and N proteins by immunob-
lot (Fig. 3f). These findings are consistent with the reported enhanced 
expression of Alpha Orf9b, Orf6, and N sgRNA in clinical samples38. 
The proportion of each sgRNA of the total sgRNA reads is summarised 
for each variant in Fig. 3g and Extended Data Fig. 7g. Intriguingly, we 
observed an additional sgRNA, N*39, with an in-frame start codon at 
M210 encoding the N C-terminus (Fig. 3h, Table S7), amounting to 0.9% 
of the total Alpha sgRNA (Fig. 3g). We did not detect N* sgRNA in VIC 
or IC19 above background levels, suggesting that the Alpha N R203K/
G204R mutations, just upstream of the new N* start codon, creates 
a novel TRS for N* transcription, as previously suggested40. Indeed, 
sgRNA abundance measurements were consistent with Orf9b and N* 
being the most differentially expressed sgRNA between Alpha and 
wave-one isolates (Fig. 3i and Extended Data Fig. 7c). Importantly, we 
note that Alpha sgRNA synthesis is not universally increased (Fig. 3a), 
because M and S sgRNAs are not enhanced.

Phosphorylation regulates Orf9b activity
To further understand differences in Alpha host responses, we used the 
RNAseq dataset to estimate transcription factor activities by mapping 
target genes to corresponding transcriptional regulators (Extended 
Data Fig. 6d, Table S5). We extracted significantly regulated transcrip-
tion factors within the top 5 most enriched terms from the unbiased 
RNAseq pathway enrichment analysis (Fig. 2b, left). This revealed that 
IRF and STAT transcription factor families are significantly less activated 

by Alpha compared to wave-one viruses (Fig. 4a). Consistently, meas-
uring IRF3 nuclear translocation by single-cell immunofluorescence 
demonstrated reduced IRF3 activation after Alpha infection compared 
to VIC (Fig. 4b). STAT1/STAT2/IRF9 lie downstream of the Type I IFN 
receptor, and potent inhibition by Alpha is consistent with increased 
Orf6 levels, known to inhibit STAT1 and IRF3 nuclear translocation12,13.

Decreased TBK1 activation by Alpha (Fig. 2g) also suggests antago-
nism upstream of IRF3 by additional mechanisms. N is reported to 
antagonise RNA sensor activation37. Alpha N has 4 coding changes, as 
compared to wave-one viruses (Fig. 1a). However, Alpha N antagonism 
of poly I:C activation of an ISG56-luciferase reporter was comparable 
to antagonism by wave-one N, suggesting these coding changes do 
not enhance Alpha N potency of innate antagonism (Fig. 4h). Nonethe-
less, increased Alpha N levels during infection may facilitate innate 
antagonism and evasion through enhanced viral and host-derived 
PAMP sequestration41 (Fig. 1f).

We have previously reported that SARS-CoV-2 Orf9b, expressed 
to significantly higher levels by Alpha (Fig. 3), interacts with human 
TOM7042, a mitochondrial import receptor required for MAVS activa-
tion of TBK1 and IRF3 and subsequent RNA sensing responses43,44. We 
previously found that two serines buried within the Orf9b-TOM70 
binding pocket, Orf9b S50 and S53, are phosphorylated during 
SARS-CoV-2 infection45–47 (Fig. 4c). Here we discovered that mutating 
Orf9b S53 or S50/S53 to the phosphomimetic glutamic acid, disrupted 
co-immunoprecipitation of Orf9b and TOM70 (Fig 4d) and abolished 
Orf9b antagonism of ISG56-luciferase reporter gene activation by 
poly I:C (Fig. 4e), presumably by preventing interaction with TOM70 
(Fig. 4c). Additionally, while the S53A mutation compromised protein 
stability (evidenced by immunoblot density, Extended Data Fig. 9), it 
confirmed S53 contribution to TOM70 binding, because S53A immu-
noprecipitated less TOM70 when normalised for Orf9b protein levels 
(Fig. 4d, Extended Data Fig. 9). Although it is unclear which kinases 
are responsible for Orf9b phosphorylation, our data are consistent 
with Orf9b suppressing signalling downstream of MAVS, by targeting 
TOM70, and also regulation of Orf9b by host-mediated phosphoryla-
tion (Fig. 4f). Intriguingly, we detected lower levels of Alpha Orf9b S53 
phosphorylation at 10 hpi, but higher Alpha Orf9b S53 phosphoryla-
tion at 24 hpi, compared to wave-one isolates (Fig. 4g). This suggests 
not only does Alpha express more Orf9b early in infection, but that 
it may also be regulated more effectively by unknown host kinases 
to manipulate host innate immunity, consistent with enhanced host 
adaptation by Alpha.

Discussion
Our data reveal that changes outside spike, including non-coding 
changes, are important in SARS-CoV-2 adaptation through influencing 
sgRNA and protein expression. For Alpha, we discovered upregulation 
of key viral innate antagonists, Orf9b, Orf6 and N, leading to enhanced 
innate immune evasion (Fig. 5). We propose that in vivo, enhanced 
innate immune antagonism by Alpha contributes to its transmission 
advantage, by enhancing replication through reducing or delaying 
early host innate responses, which otherwise protect airway cells 
from infection and limit viral dissemination. This is also consistent 
with reports of prolonged viral shedding of Alpha48,49, suggesting less 
effective control of replication. Enhanced innate evasion has also been 
linked to transmission of HIV, another emergent pandemic virus5,21.

Importantly, the currently dominant SARS-CoV-2 Delta (B.1.617.2) 
VOC bears the same non-coding deletion in the N-Kozak as Alpha, and 
the newly identified VOC Omicron (B.1.1.529) has a nt substitution 
(28271A>T) at the same position that would be predicted to confer 
a similar effect on the N-Kozak and translation initiation (Figure 6). 
Therefore, we suggest that these changes could represent important 
human adaptations that influence Orf9b levels which, in turn, would 
dampen the immune response. Interestingly, the 3-nucleotide change 
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(28881-28883 GGG->AAC) that confers N* sgRNA synthesis is also pre-
sent in both the Gamma (P.1/B.1.1.28.1) and Omicron VOCs (Figure 6). 
However, more work is needed to determine if N* is involved in dsRNA 
sequestration or innate antagonism. Our data do not rule out cod-
ing changes in other innate antagonists being important for Alpha 
adaptation to humans, but highlight the importance of quantitative 
sequencing of sgRNAs with future VOCs.

It is striking that host phosphorylation regulates Orf9b activity. We 
hypothesise that unphosphorylated Orf9b is maximally active early 
after infection to permit effective innate antagonism and viral produc-
tion, but as host innate activation begins, Orf9b becomes phosphoryl-
ated and switched off, driving subsequent innate immune activation. 
Such an inflammatory switch may have evolved to enhance transmis-
sion by increasing inflammation at the site of infection once virus 
production is high. This switch is enhanced in Alpha, evidenced by 
a greater differential in Orf9b phosphorylation between early and 
late time points, consistent with delayed symptom onset for Alpha, 
and enhanced inflammatory disease50,51. Understanding Orf9b phos-
phorylation mechanisms will be key to understanding this switch. We 
previously identified MARK1, 2 and 3 kinases as interaction partners 
of Orf9b42 and ongoing studies will reveal their role in infection and 
the innate response.

The importance of Alpha adaptation to avoid innate immunity is 
also underlined by identification of the first recombinant VOC52. This 
variant has recombined around the Orf6-Orf7 junction, combining 
spike adaptations of enhanced entry, furin cleavage and antibody 
escape from Delta53–56, with enhanced innate immune antagonism of 
Alpha, mediated by increased N, N* and Orf9b expression. Inter-VOC 
recombination is a key development in the pandemic, consistent with 
the known importance of recombination in generation of coronavirus 
diversity57, in this instance linking Alpha and Delta adaptations. Our 
findings highlight the importance of studying changes outside spike 
to predict the behaviour of current and future VOCs, and emphasise 
the importance of innate immune evasion in the ongoing process of 
SARS-CoV-2 adaptation to humans.
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Figure 1 | SARS-CoV-2 Alpha variant antagonises innate immune activation 
more efficiently than early-lineage isolates. a. Protein coding changes in 
Alpha (red), IC19 (grey) and VIC (blue) are indicated in comparison to the 
Wuhan-Hu-1 reference genome (MN908947). b, c, d and e. Viral replication 
after Calu-3 infection with 5000 E copies/cell. f. Total area of dsRNA area/cell 
measured by single-cell immunofluorescence in cells infected with 2000 E 
copies/cell. g. IFNβ expression and secretion from cells in (b). h. Replication, 
IFNβ expression and secretion after infection with 250 E copies/cell. i and j. 
Measurements of infection in HAE cells infected with 2000 E copies/cell. k. 

IFNβ and ISGs expression in cells from ( j). Mean +/- SEM of one of three 
representative experiments performed in triplicate. For (i,j,k), n=6, two 
independent donors. For (f), one of two independent experiments with one 
data point per cell is shown. Two Way ANOVA (b,c,d,e), One Way ANOVA with 
Tukey post-test (g,i) or Wilcoxon matched-pairs signed rank test ( j,k). Blue 
stars: Alpha vs VIC (blue lines and symbols), grey stars: Alpha vs IC19 (grey lines 
and symbols). * (p<0.05), ** (p<0.01), *** (p<0.001), **** (p<0.0001). ns: 
non-significant.
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Figure 2 | Global RNAseq and proteomics reveal innate immune 
suppression by Alpha. a. Schematic of the experimental workflow. Calu-3 cells 
were infected with SARS-CoV-2 Alpha (red), VIC (blue) or IC19 (grey) or 
mock-infected. Phosphoproteomics and abundance proteomics analysis using 
a data-independent acquisition (DIA) and total RNA-sequencing was 
performed at 10 and 24h. b. Unbiased pathway enrichment analysis. The 
-log10(p-values) were averaged for enrichments using Alpha/VIC and Alpha/
IC19 at 10 and 24 hpi to rank terms. The top 5 terms are shown. Innate immune 
system terms are bolded. c. Heatmap depicting log2 FC (color) of ISGs32 
comparing Alpha to VIC or IC19. Black outlines indicate p<0.01. d. Box plots 
show log2 FC of ISG between Alpha/VIC, Alpha/IC19 or IC19/VIC. Dots indicate 

different ISGs. e. RT-qPCR analysis of bolded ISGs from (a) in cells infected with 
2000 E copies/cell. f. Number of phosphorylation sites significantly 
dysregulated for Alpha, VIC, or IC19 versus mock at an absolute log2 FC > 1 and 
adjusted p-value < 0.05. g. Kinase activities for the top enriched terms for the 
phosphoproteomics dataset “Reactome innate immune system” (b, right). 
Mean +/- SEM (e). Two-tailed student’s t-tests (d) or Two Way ANOVA with 
Tukey’s multiple comparisons post-test (e) were used. Blue stars: Alpha vs VIC 
(blue bars), grey stars: Alpha vs IC19 (grey bars). * (p<0.05), ** (p<0.01), *** 
(p<0.001), **** (p<0.0001), or exact p-value (d). ns: non-significant. FC, fold 
change.
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Figure 3 | SARS-CoV-2 Alpha variant upregulates innate immune 
antagonists at the subgenomic RNA and protein level. a. Log2 ratio of Alpha 
to VIC sgRNA normalised to total genomic RNA per time point and virus (top). 
Log2 ratio of summed peptide intensities per viral protein comparing Alpha to 
VIC (bottom) (n=3) b. c. and d. Quantification of Orf9b (b), Orf6 (c) and N (d) 
sgRNA from RNAseq dataset (top) and summed peptides per viral protein 
(bottom). e. Quantification of Orf9b & N (left) or Orf6 (right) sgRNA abundance 
via RT-qPCR. f. Representative western blot of Orf6, N and S expression in 
infected Calu-3 (2000E copies/cell) at 24 hpi (n=3). g. Pie chart depicting 

proportion of total sgRNA mapping to each viral sgRNA for Alpha. VIC 
percentages in parentheses. h. sgRNA log2 normalised counts (dot height) 
projected onto their identified start sites on the SARS-CoV-2 genome. 
Canonical and two non-canonical sgRNAs (Orf9b and N*) are depicted. i. 
Scatter plot of sgRNA abundance in Alpha or VIC at 24 hpi. Grey dots indicate 
other non-canonical sgRNAs containing a leader sequence but no clear start 
codon. Mean +/- SEM (a-e). Two Way ANOVA with Tukey’s multiple comparisons 
post-test (c-e). * (p<0.05), ** (p<0.01), *** (p<0.001), **** (p<0.0001). ns: 
non-significant. ND, not detected.
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Figure 4 | Orf9b binds TOM70 and antagonises innate immune activation 
downstream of RNA sensing. a. TF activities in the 5 top enriched terms for 
the RNASeq dataset (Fig. 2b, left), rows clustered hierarchically based on 
activity magnitude. Black outlines show activities >1.5 or <-1.5. b. IRF3 nuclear 
to cytoplasmic ratio measured by single-cell immunofluorescence at 24h in 
cells infected at 2000 E copies/cell. 1000 randomly sampled cells per condition 
(cut-off of 0.1>=<5). c. Cryo-EM of SARS-CoV-2 Orf9b (yellow) in complex with 
TOM70 (blue) (PDB: 7KDT)47. Serines (S50 and S53) in Orf9b in the TOM70 
binding site in red. d. Co-immunoprecipitation of Orf9b wild-type (WT) or 
point mutants with TOM70 in HEK293T cells. e. ISG56-reporter activation by 
poly I:C in the presence of Orf9b WT, S50/53E or empty vector (EV) in HEK293T 

cells. f. Schematic of proposed innate immune antagonism by Orf9b. (i) When 
S53 is unphosphorylated, Orf9b binds TOM70 to inhibit innate immune 
signaling. (ii) When S53 is phosphorylated, Orf9b can no longer interact or 
antagonise innate immune activation. g. Ratio between the intensity of Orf9b 
peptide phosphorylated on S53 and total Orf9b (as calculated in Fig. 3b, 
bottom) from phospho- and abundance proteomics of Calu-3 cells (Fig. 2). h. 
ISG56-reporter activation by poly:IC in the presence of N (VIC), N (Alpha) or EV 
in HEK293T cells. Means +/- SEM. Mann-Whitney Test (b) or Two Way ANOVA 
with Tukey’s post-test (e,h). For (e) ORF9b WT vs ORF9b S50/53E. For (h), blue 
stars: VIC vs EV, red stars: Alpha vs EV. * (p<0.05), ** (p<0.01), *** (p<0.001), **** 
(p<0.0001). TF, Transcription factor.
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Figure 5 | Antagonism of innate immune activation by Alpha. SARS-CoV-2 
Alpha has evolved more effective innate immune antagonisms. Wave one 
isolates activate a delayed innate response in airway epithelial cells relative to 
rapid viral replication, indicative of viral innate immune antagonism early in 
infection. Known innate immune antagonists Orf9b, Orf6 and N act at different 
levels to inhibit RNA sensing. Orf6 inhibits IRF3 and STAT1 nuclear 
translocation12,13, N prevents activation of RNA sensor RIG-I37 and Orf9b 
inhibits RNA sensing through interaction with TOM70 regulated by 
phosphorylation. Alpha has evolved to produce more sgRNA for these key 
innate immune antagonists leading to increased protein levels and enhanced 
innate immune antagonism as compared to first wave isolates.
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Figure 6 | Variants of concern (VOCs) present similar nucleotide mutations 
in N and Orf9b. Genomic alignment of wave-one isolates and five VOCs 
showing sections of N and its 5' region, codonized by CodAlignView in the 
reading frames of N (a) and ORF9b (b). The alignment includes TRS for N sgRNA 
present in all genomes; partial TRS for ORF9b sgRNA only in Alpha; TRS for N* 
sgRNA in Gamma and partial TRS in Alpha and Omicron. All mutations in ORF9b 

are color coded to indicate conservative (dark green) and radical (red) amino 
acid changes in ORF9b protein. We also highlighted one-base deletion at 5' of 
the N start codon in Alpha and Delta and A to T substitution in Omicron, which 
change their adequate (A in -3, T in +4) Kozak initiation context to the weak (T in 
-3, T in +4) context, and could lead to more leaky scanning translation of Orf9b 
from the N sgRNA.
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Methods

Cell culture
Calu-3 cells were purchased from ATCC (HTB-55) and Caco-2 cells were a 
kind gift from Dr. Dalan Bailey (Pirbright Institute, USA). Hela-ACE2 cells 
were a kind gift from Dr. James E Voss (TSRI, USA)58. HEK293T cells were 
a kind gift from Jeremy Luban. Cells were cultured in Dulbecco’s modi-
fied Eagle Medium (DMEM) supplemented with 10% heat-inactivated 
FBS (Labtech), 100U/ml penicillin/streptomycin, with the addition of 
1% Sodium Pyruvate (Gibco) and 1% Glutamax. All cells were passaged at 
80% confluence. For infections, adherent cells were trypsinised, washed 
once in fresh medium and passed through a 70 µm cell strainer before 
seeding at 0.2x106 cells/ml into tissue-culture plates. Calu-3 cells were 
grown to 60-80% confluence prior to infection as described previously59. 
Primary normal human Bronchial/Tracheal Epithelial Cells(ATCC PCS-
300-010) were expanded at the density of 6000 cells/cm2 on a layer 
of lethally irradiated mouse 3T3-J2 cells60 with keratinocyte culture 
medium cFAD (3:1 DMEM (Gibco) to F-12 Nut Mix (Ham) (Gibco), 10% FBS 
(Sigma), 1% Penicillin-Streptomycin (100X, Sigma), 0.4 μg/mL Hydro-
cortisone (Calbiochem), 5 μg/ml Insulin, 10-10 Cholera Toxin (Sigma) 
and 2x10-9 M Triodothyronine (Sigma). Cells were stimulated with  
10 ng/mL hEGF (PeproTech) at day 3 and 5 of culture. Sub-confluent cul-
tures were trypsinised with 0.25% Trypsin-EDTA (Sigma) and seeded at 
0.05x106 cells into 0.4μm transparent 12-well transwell inserts (Greiner) 
in CFAD. When cells reached confluence, basal medium was replaced 
with complete PneumaCult-ALI medium (StemCell) and apical medium 
removed completely. Cells were cultured at the air-liquid interface for 
21-24 days and basal medium replaced every 2-3 days.

Viruses
SARS-CoV-2 isolate VIC was provided by NISBC, and IC19, Alpha, Alpha (B) 
and Alpha (C) are reported in61, full isolate names and GISAID references 
are listed below. Viruses were propagated by infecting Caco-2 cells at MOI 
0.01 TCID50/cell, in culture medium at 37 °C. Virus was harvested at 72 
hours post infection (hpi) and clarified by centrifugation at 4000 rpm for 
15 min at 4 °C to remove any cellular debris. We have previously shown that 
infection of Caco-2 cells in these conditions does not result in activation of 
the innate response or cytokine carryover59. Virus stocks were aliquoted 
and stored at -80 °C. Virus stocks were quantified by extracting RNA from 
100µl of supernatant with 1µg carrier RNA using Qiagen RNeasy clean up 
RNA protocol, before measuring viral E RNA copies per ml by RT-qCPR as 
described below. VIC virus refers to isolate BetaCoV/Australia/VIC01/2020 
and PANGO lineage B. IC19 virus refers to isolate hCoV-19/England/
IC19/2020, PANGO lineage B.1.13, and GISAID Accession ID EPI_ISL_475572. 
Alpha virus refers to isolate hCoV-19/England/204690005/2020, PANGO 
lineage Alpha, and GISAID Accession ID EPI_ISL_693401. Alpha (B) virus 
refers to isolate hCoV-19/England/205090256/2020, PANGO lineage 
Alpha, and GISAID Accession ID EPI_ISL_747517. Alpha (C) refers to isolate 
hCoV-19/England/205080610/2020, PANGO lineage Alpha, and GISAID 
Accession ID EPI_ISL_723001.

Viral sequencing and assembly
Viral stocks were sequenced to confirm each stock was the same at 
consensus level to the original isolate. Sequencing was performed 
using a multiplex PCR-based approach using the ARTIC LoCost protocol 
and v3 primer set as described62,63. Amplicon libraries were sequenced 
using MinION flow cells v9.4.1 (Oxford Nanopore Technologies, Oxford, 
UK). Genomes were assembled using reference-based assembly to the 
MN908947.3 sequence and the ARTIC bioinformatic pipeline using 
20x minimum coverage cut-off for any region of the genome and 50.1% 
cut-off for calling single nucleotide polymorphisms.

Infection of human cells
For infections, multiplicities of infection (MOI) were calculated using E 
copies/cell quantified by RT-qPCR. Cells were inoculated with diluted 

virus stocks for 2h at 37 °C, subsequently washed once with PBS and 
fresh culture medium was added. At indicated time points, cells were 
harvested for analysis. For primary HAE infections, virus was added 
to the apical side for 2h at 37 °C. Supernatant was then removed, cells 
washed twice with PBS. All liquid was removed from the apical side 
and basal medium was replaced with fresh Pneumacult ALI medium 
for the duration of the experiment. Virus release was measured at the 
indicated time points by extracting viral RNA from apical PBS washes.

Virus quantification by TCID50
Virus titres were determined by 50% tissue culture infectious dose 
(TCID50) on Hela-ACE2 cells. In brief, 96 well plates were seeded at 
5x103 cells/well in 100 µl. Eight ten-fold serial dilutions of each virus 
stock or supernatant were prepared and 50 µl added to 4 replicate 
wells. Cytopathic effect (CPE) was scored at 2-3 days post infection. 
TCID50/ml was calculated using the Reed & Muench method, and an 
Excel spreadsheet created by Dr. Brett D. Lindenbach was used for 
calculating TCID50/mL values64.

RT-qPCR of viral proteins in infected cells
RNA was extracted using RNeasy Micro Kits (Qiagen) and residual 
genomic DNA was removed from RNA samples by on-column DNAse I 
treatment (Qiagen). Both steps were performed according to the manu-
facturer’s instructions. cDNA was synthesised using SuperScript III with 
random hexamer primers (Invitrogen). RT-qPCR was performed using 
Fast SYBR Green Master Mix (Thermo Fisher) for host gene expression 
and subgenomic RNA expression or TaqMan Master mix (Thermo Fisher) 
for viral RNA quantification, and reactions performed on the QuantStu-
dio 5 Real-Time PCR systems (Thermo Fisher). Viral E RNA copies were 
determined by a standard curve, using primers and a Taqman probe 
specific for E, as described elsewhere65 and below. The primers used 
for quantification of viral subgenomic RNA are listed below, the same 
forward primer against the leader sequence was used for all reactions, 
and is as described by the Artic Network39,62. Using the 2-ΔΔCt method, 
sgRNA levels were normalised to GAPDH to account for differences in 
RNA loading and then normalised to the level of ORF1a gRNA quantified 
in the same way for each variant to account for differences in the level 
of infection. Host gene expression was determined using the 2-ΔΔCt 
method and normalised to GAPDH expression using primers listed below.

The following primers and probes were used:
SARS-CoV-2 E_Sarbeco_Fwd: 5’-ACAGGTACGTTAATAGTT 

AATAGCGT-3’
SARS-CoV-2 E_Sarbeco_Probe1: 5’-FAM-ACACTAGCCATCCTTACT 

GCGCTTCG-TAMRA-3’
SARS-CoV-2 E_Sarbeco_Rev: 5’-ATATTGCAGCAGTACGCACACA-3’

5’_Leader_Fwd: ACCAACCAACTTTCGATCTCTTGT
Orf1a_Rev: CCTCCACGGAGTCTCCAAAG
Orf6_sg_Rev: GAGGTTTATGATGTAATCAAGATTC
Orf9b_N_sgRNA_Rev: CACTGCGTTCTCCATTCTGG
S_sgRNA_Rev: GTCAGGGTAATAAACACCACGTG
Orf3a_sgRNA_Rev: GCAGTAGCGCGAACAAAATCTG

CCL2: Fwd 5’-CAGCCAGATGCAATCAATGCC-3’ Rev 5’-TGGAATCCT 
GAACCCACTTCT-3’

CCL3: Fwd 5’-CAGCCAGATGCAATCAATGCC-3’ Rev 5’-TGGAATCCT 
GAACCCACTTCT-3’

CXCL10: Fwd 5’-TGGCATTCAAGGAGTACCTC-3’ Rev 5’-TTGTAGCA 
ATGATCTCAACACG-3’

GAPDH: Fwd 5’-GGGAAACTGTGGCGTGAT-3’ Rev 5’-GGAGGAGTGG 
GTGTCGCTGTT-3’

IFIT1: Fwd 5’-CCTCCTTGGGTTCGTCTACA-3’ Rev 5’-GGCTGATATC 
TGGGTGCCTA-3’

IFIT2: Fwd 5’-CAGCTGAGAATTGCACTGCAA-3’ Rev 5’-CGTAGGCTG 
CTCTCCAAGGA-3’
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I F N B 1 :  F w d  5 ’ - A G G A C A G G AT G A A C T T T G A C - 3 ’  R e v 
5’-TGATAGACATTAGCCAGGAG-3’

IFNL1: Fwd 5’-CACATTGGCAGGTTCAAATCTCT-3’ Rev 5’-CCAGCG 
GACTCCTTTTTGG-3’

IFNL3: Fwd 5’-TAAGAGGGCCAAAGATGCCTT-3’ Rev 5’-CTGGTCC 
AAGACATCCCCC-3’

IL-6: Fwd 5’-AAATTCGGTACATCCTCGACG-3’ Rev 5’-GGAAGGTT 
CAGGTTGTTTTCT-3’

IL-8: Fwd 5’-ATGACTTCCAAGCTGGCCGTGGCT-3’ Rev 5’-TCTCAGCCC 
TCTTCAAAAACTTCTC-3’

MX1: Fwd 5’-ATCCTGGGATTTTGGGGCTT-3’ Rev 5’-CCGCTTG 
TCGCTGGTGTCG-3

RSAD2: Fwd 5’ -CTGTCCGCTGGAAAGTG-3’ Rev 5’-GCTTCTT 
CTACACCAACATCC-3’

TNF: Fwd 5’ -AGCCTCTTCTCCTTCCTGATCGTG-3’ Rev 5’-GGCTGATT 
AGAGAGAGGTCCCTGG-3’

Negative sense-specific RT-qPCR
A negative sense-strand specific assay for SARS-CoV2 E gene was 
designed and established. Standard reference for E-gene was gener-
ated using fragment 11 (genome positions 25595-28779)66 generously 
provided by Professor Volker Thiel from the University of Bern. The 
strand-specific RNA standards were synthesized by in vitro transcrip-
tion using T7 RNA polymerase where each RNA template is flanked 
with a specific non-viral sequence tag. Reverse transcription was per-
formed using 1010 copies of either positive or negative strand RNA with 
or without addition of an excess copies (107) of the opposite strand to 
test the assay specificity. Negative sense-specific qPCR reactions were 
performed using cDNA templates of the negative strand templates 
serially diluted by 10-fold from 107 to 102. The qPCR reactions were 
conducted as follows: 95 °C for 2 min, followed by 45 cycles of 95 °C for 
10 sec and 60 °C for 60 sec on a ViiA 7 real time PCR machine (Applied 
Biosystems, California, USA). Results were analysed using the ViiATM7 
software v1.1 (Applied Biosystems, California, USA). To evaluate the 
specificity of the assay, the qPCR was performed using the primers of 
the opposite strand side-by-side or in the presence of excess copies 
of the opposite strand.

Western blot for viral proteins in infected cells
For detection of N, Orf6, spike and tubulin expression, whole cell pro-
tein lysates were extracted with RIPA buffer, and then separated by 
SDS-PAGE, transferred onto nitrocellulose and blocked in PBS with 
0.05% Tween 20 and 5% skimmed milk. Membranes were probed 
with rabbit-anti-SARS spike (Invitrogen, PA1-411-1165, 0.5ug/ml), 
rabbit-anti-Orf6 (Abnova, PAB31757, 4ug/ml), Cr3009 SARS-CoV-2 
cross-reactive human-anti-N antibody (1ug/ml) (a kind gift from 
Dr. Laura McCoy, UCL), mouse-anti-alpha-tubulin (SIGMA, clone 
DM1A) followed by IRDye 800CW or 680RD secondary antibodies 
(Abcam, goat anti-rabbit, goat anti-mouse or goat anti-human). Blots 
were Imaged using an Odyssey Infrared Imager (LI-COR Biosciences) 
and analysed with Image Studio Lite software.

Flow cytometry of infected cells
For flow cytometry analysis, adherent cells were recovered by trypsini-
sation and washed in PBS with 2mM EDTA (PBS/EDTA). Cells were 
stained with fixable Zombie UV Live/Dead dye (Biolegend) for 6 min at 
room temperature. Excess stain was quenched with FBS-complemented 
DMEM. Unbound antibody was washed off thoroughly and cells were 
fixed in 4% PFA prior to intracellular staining. For intracellular detection 
of SARS-CoV-2 nucleoprotein, cells were permeabilised for 15 min with 
Intracellular Staining Perm Wash Buffer (BioLegend). Cells were then 
incubated with 1μg/ml CR3009 SARS-CoV-2 cross-reactive antibody (a 
kind gift from Dr. Laura McCoy, UCL) in permeabilization buffer for 30 
min at room temperature, washed once and incubated with secondary 
Alexa Fluor 488-Donkey-anti-Human IgG ( Jackson Labs). All samples 

were acquired on a BD Fortessa X20 using BD FACSDiva software. Data 
was analysed using FlowJo v10 (Tree Star).

Innate immune sensing assay
HEK293T cells were seeded in 48-well plates (5x104 cells/well) the day 
before transfection. For viral protein expression, cells were trans-
fected with 100ng of empty vector or vector encoding either ORF9b, 
ORF9bS50/53E, VIC N or Alpha N (pLVX-EF1alpha-IRES-Puro backbone), 
alongside 10ng of ISG56-firefly luciferase reporter plasmid (kindly 
provided by Andrew Bowie, Trinity College Dublin), and 2.5ng of a 
Renilla luciferase under control of thymidine kinase promoter (Pro-
mega), as a control for transfection. Transfections were performed 
with 0.75μL fugene (Promega) and 25μl Optimem (Gibco) per well. 
Cells were stimulated 24 hours post plasmid transfection with poly 
I:C (Invivogen), concentrations stated in figures (final 250μl volume 
per well), using Lipofectamine 2000 (Invitrogen) at a 3:1 ratio and 25μl 
optimem. Cells were lysed with 100 μl passive lysis buffer (Promega) 24 
h after stimulation, 30 μl of cell lysis was transferred to a white 96-well 
assay plate and firefly and renilla activities were measured using the 
Dual-Glo® Luciferase Assay System (Promega), reading luminescence 
on a GloMax ®-Multi Detection System (Promega). For each condition, 
data were normalized by dividing the firefly luciferase activity by renilla 
luciferase activity and then compared to the empty-vector transfected 
mock-treated control to generate a fold induction.

Immunofluorescence staining and microscopy imaging
Cells were fixed using 4% PFA-PBS for 1h and subsequently washed with 
PBS. A blocking step was carried out for 1h at room temperature with 10% 
goat serum/1%BSA in PBS. Nucleocapsid (N) protein detection was per-
formed by primary incubation with human anti-N antibody (Cr3009, 1ug/
ml) for 18h, and washed thoroughly in PBS. Where appropriate, N-protein 
staining was followed by incubation with mouse anti-IRF3 (sc-33641, 
Santa Cruz) for 1 h. dsRNA was detected by primary incubation with 
mouse anti-dsRNA (MABE1134, Millipore) for 18h. Primary antibodies 
were detected by labelling with secondary anti-human AlexaFluor-568 
and anti-mouse AlexaFluor 488 conjugates ( Jackson Immuno Research) 
for 1h. All cells were then labelled with either HCS CellMask DeepRed 
(H32721, Thermo Fisher) or Phalloidin-AlexaFluor 568 (Thermo Fisher) 
and Hoechst33342 (H3570, Thermo Fisher). Images were acquired using 
the WiScan® Hermes High-Content Imaging System (IDEA Bio-Medical, 
Rehovot, Israel) at magnification 10X/0.4NA or 40X/0.75NA. Four chan-
nel automated acquisition was carried out sequentially (DAPI/TRITC, 
GFP/Cy5). For nuclear translocation assay images were acquired at 40X 
magnification, 35% density/ 30% well area resulting in 102 FOV/well. For 
dsRNA quantification, images were acquired at 10X magnification, 100% 
density/ 80% well area resulting in 47 FOV/well.

Image analysis of immunofluorescence experiments
All image channels were pre-processed using a batch rolling ball back-
ground correction in FIJI imagej software package67 prior to 514 quanti-
fication. For nuclear translocation analysis, automated image analysis 
was carried out using CellProfiler68. Firstly, nuclei were identified as pri-
mary objects by segmentation of the Hoechst33342 channel. Cells were 
identified as secondary objects by nucleus-dependent segmentation of 
the CellMask channel. Cell cytoplasm was segmented by subtracting 
the nuclear objects mask from the cell masks. Nucleocapsid positive 
cells were identified by identifying nucleocapsid signal as primary 
objects followed by generation of a nucleocapsid mask which was then 
applied to filter the segmented cell population. Intensity properties 
were calculated for the nuclei, cytoplasm and cell object populations. 
Nuclear:cytoplasmic ratio was calculated as part of the pipeline by divid-
ing the Integrated Intensity of the nuclei object by the integrated intensity 
of corresponding cytoplasm object. Plotted are 1000 randomly sampled 
cells selected for each condition using the 'Pandas' data processing pack-
age in Python 3 with a filter of 0.1>=<5. dsRNA was quantified using the 
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Athena software (IDEA Bio-Medical, Rehovot, Israel) using the ‘Intracel-
lular Granules’ module. In short, dsRNA granules within segmented cells 
were thresholded based off of the background intensity of the mock 
infected population. Infected cell populations were identified as having 
a minimum of two segmented dsRNA objects. For dsRNA positive cells, 
Intensity and area properties were calculated.

Coimmunoprecipitation of Tom70 with Orf9b
HEK293T were transfected with the indicated mammalian expres-
sion plasmids using Lipofectamine 2000 (Invitrogen). Twenty-four 
hours post-transfection, cells were harvested and lysed in NP-40 lysis 
buffer [0.5% Nonidet P 40 Substitute (NP-40; Fluka Analytical), 50 
mM Tris-HCl, pH 7.4 at 4 °C, 150 mM NaCl, 1 mM EDTA] supplemented 
with cOmplete mini EDTA-free protease and PhosSTOP phosphatase 
inhibitor cocktails (Roche). Clarified cell lysates were incubated with 
Streptactin Sepharose beads (IBA) for 2 hours at 4 °C, followed by five 
washes with NP-40 lysis buffer. Protein complexes were eluted in the 
SDS loading buffer and were analyzed by western blotting with the 
indicated antibodies. Antibodies: Rabbit anti–Strep-tag II (Abcam 
#ab232586); Rabbit anti-beta-actin (Cell Signaling Technology #4967); 
Monoclonal mouse anti-FLAG M2 antibody (Sigma Aldrich, F1804), 
Polyclonal rabbit anti-FLAG antibody (Sigma Aldrich, F7425)

Cell lysis and digestion for proteomics
Following the infection time course, cells in 6-well plates were washed 
quickly three times in ice cold 1x PBS. Next, cells were lysed in 250uL/well 
of 6M guanidine hydrochloride (Sigma) in 100mM Tris-HCl (pH 8.0) and 
scraped with a cell spatula for complete collection of the sample. Sam-
ples were then boiled for 5 minutes at 95C to inactivate proteases, phos-
phatases, and virus. Samples were frozen at -80C and shipped to UCSF 
on dry ice. Upon arrival, samples were thawed, an additional 250uL/
sample of 6M guanidine hydrochloride buffer was added, and sam-
ples were sonicated for 3x for 10 seconds at 20% amplitude. Insoluble 
material was pelleted by spinning samples at max speed for 10 minutes. 
Supernatant was transferred to a new protein lo-bind tube and protein 
was quantified using a Bradford assay. The entire sample (approximately 
600ug of total protein) was subsequently processed for reduction and 
alkylation using a 1:10 sample volume of tris-(2-carboxyethyl) (TCEP) 
(10mM final) and 2-chloroacetamide (4.4mM final) for 5 minutes at 45 °C 
with shaking. Prior to protein digestion, the 6M guanidine hydrochlo-
ride was diluted 1:6 with 100mM Tris-HCl pH8 to enable the activity of 
trypsin and LysC proteolytic enzymes, which were subsequently added 
at a 1:75 (wt/wt) enzyme-substrate ratio and placed in a 37 °C water bath 
for 16-20 hours. Following digestion, 10% trifluoroacetic acid (TFA) was 
added to each sample to a final pH ∼2. Samples were desalted under 
vacuum using 50mg Sep Pak tC18 cartridges (Waters). Each cartridge 
was activated with 1 mL 80% acetonitrile (ACN)/0.1% TFA, then equili-
brated with 3 × 1 mL of 0.1% TFA. Following sample loading, cartridges 
were washed with 4 × 1 mL of 0.1% TFA, and samples were eluted with 
2 × 0.4 mL 50% ACN/0.25% formic acid (FA). 60μg of each sample was 
kept for protein abundance measurements, and the remainder was 
used for phosphopeptide enrichment. Samples were dried by vacuum 
centrifugation. The same sample was used for abundance proteomics 
and phosphoproteomics analysis.

Phosphopeptide enrichment for proteomics
IMAC beads (Ni-NTA from Qiagen) were prepared by washing 3x with 
HPLC water, incubating for 30 minutes with 50mM EDTA pH 8.0 to strip 
the Ni, washing 3x with HPLC water, incubating with 50mM FeCl3 dis-
solved in 10% TFA for 30 minutes at room temperature with shaking, 
washing 3x with and resuspending in 0.1% TFA in 80% acetonitrile. Pep-
tides were enriched for phosphorylated peptides using a King Flisher 
Flex. For a detailed protocol, please contact the authors. Phosphoryl-
ated peptides were found to make up more than 90% of every sample, 
indicating high quality enrichment.

Mass spectrometry data acquisition for proteomics
Digested samples were analysed on an Orbitrap Exploris 480 mass 
spectrometry system (Thermo Fisher Scientific) equipped with an Easy 
nLC 1200 ultra-high pressure liquid chromatography system (Thermo 
Fisher Scientific) interfaced via a Nanospray Flex nanoelectrospray 
source. For all analyses, samples were injected on a C18 reverse phase 
column (25 cm x 75 μm packed with ReprosilPur 1.9 μm particles). 
Mobile phase A consisted of 0.1% FA, and mobile phase B consisted of 
0.1% FA/80% ACN. Peptides were separated by an organic gradient from 
5% to 30% mobile phase B over 112 minutes followed by an increase to 
58% B over 12 minutes, then held at 90% B for 16 minutes at a flow rate 
of 350 nL/minute. Analytical columns were equilibrated with 6 μL of 
mobile phase A. To build a spectral library, one sample from each set 
of biological replicates was acquired in a data dependent manner. Data 
dependent analysis (DDA) was performed by acquiring a full scan over 
a m/z range of 400-1000 in the Orbitrap at 60,000 resolving power 
(@200 m/z) with a normalised AGC target of 300%, an RF lens setting 
of 40%, and a maximum ion injection time of 60 ms. Dynamic exclusion 
was set to 60 seconds, with a 10 ppm exclusion width setting. Peptides 
with charge states 2-6 were selected for MS/MS interrogation using 
higher energy collisional dissociation (HCD), with 20 MS/MS scans per 
cycle. For phosphopeptide enriched samples, MS/MS scans were ana-
lysed in the Orbitrap using isolation width of 1.3 m/z, normalised HCD 
collision energy of 30%, normalised AGC of 200% at a resolving power 
of 30,000 with a 54 ms maximum ion injection time. Similar settings 
were used for data dependent analysis of samples used to determine 
protein abundance, with an MS/MS resolving power of 15,000 and a 22 
ms maximum ion injection time. Data-independent analysis (DIA) was 
performed on all samples. An MS scan at 60,000 resolving power over a 
scan range of 390-1010 m/z, a normalised AGC target of 300%, an RF lens 
setting of 40%, and a maximum injection time of 60 ms was acquired, 
followed by DIA scans using 8 m/z isolation windows over 400-1000 
m/z at a normalised HCD collision energy of 27%. Loop control was 
set to All. For phosphopeptide enriched samples, data were collected 
using a resolving power of 30,000 and a maximum ion injection time 
of 54 ms. Protein abundance samples were collected using a resolving 
power of 15,000 and a maximum ion injection time of 22 ms.

Spectral library generation and raw data processing for proteomics
Raw mass spectrometry data from each DDA dataset were used to 
build separate libraries for DIA searches using the Pulsar search engine 
integrated into Spectronaut version 14.10.201222.47784 by searching 
against a database of Uniprot Homo sapiens sequences (downloaded 
February 28, 2020) and 29 SARS-CoV-2 protein sequences translated 
from genomic sequence downloaded from GISAID (accession EPI_
ISL_406596, downloaded March 5, 2020) including mutated tryptic 
peptides corresponding to the variants assessed in this study. For pro-
tein abundance samples, data were searched using the default BGS 
settings, variable modification of methionine oxidation, static modi-
fication of carbamidomethyl cysteine, and filtering to a final 1% false 
discovery rate (FDR) at the peptide, peptide spectrum match (PSM), 
and protein level. For phosphopeptide enriched samples, BGS settings 
were modified to include phosphorylation of S, T, and Y as a variable 
modification. The generated search libraries were used to search the 
DIA data. For protein abundance samples, default BGS settings were 
used, with no data normalisation performed. For phosphopeptide 
enriched samples, the Significant PTM default settings were used, 
with no data normalisation performed, and the DIA-specific PTM site 
localization score in Spectronaut was applied.

Mass spectrometry data pre-processing
Quantitative analysis was performed in the R statistical programming lan-
guage (version 3.6.1, 2019-07-05). Initial quality control analyses, includ-
ing inter-run clusterings, correlations, principal components analysis, 
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peptide and protein counts and intensities were completed with the R 
package artMS (version 1.8.1). Based on obvious outliers in intensities, 
correlations, and clusterings in PCA analysis, 1 run was discarded from the 
protein phosphorylation dataset (IC19 24h replicate 2). Statistical analysis 
of phosphorylation and protein abundance changes between mock and 
infected runs, as well as between infected runs from different variants (e.g. 
Kent versus VIC) were computed using peptide ion fragment data output 
from Spectronaut and processed using artMS. Specifically, quantification 
of phosphorylation based on peptide ions were processed using artMS as 
a wrapper around MSstats, via functions artMS::doSiteConversion and 
artMS::artmsQuantification with default settings. All peptides contain-
ing the same set of phosphorylated sites were grouped and quantified 
together into phosphorylation site groups. For both phosphopeptide 
and protein abundance MSstats pipelines, MSstats performs normalisa-
tion by median equalization, imputation of missing values and median 
smoothing to combine intensities for multiple peptide ions or fragments 
into a single intensity for their protein or phosphorylation site group, and 
statistical tests of differences in intensity between infected and control 
time points. When not explicitly indicated, we used defaults for MSstats 
for adjusted p-values, even in cases of N = 2. By default, MSstats uses 
Student’s t-test for p-value calculation and Benjamini-Hochberg method 
of FDR estimation to adjust p-values. After quality control data filtering, 
principal components analysis (PCA; Extended Data Fig. 3b) and Pear-
son’s correlation (Extended Data Fig. 3c) confirmed strong correlation 
between biological replicates, time points, and conditions. On average, 
we quantified 33,000-40,000 peptides mapping to 3,600-4,000 proteins 
for protein abundance (Extended Data Fig. 3e), and 22,000-30,000 phos-
phorylated peptides mapping to 3,200-3,800 proteins (Extended Data 
Fig. 3f). On average we find that biological replicates had 61%-82% peptide 
detection overlap for protein abundance and 62%-93% phosphorylation 
site overlap (Extended Data Fig. 3g).

Refining and filtering phosphorylation and abundance data
MSstats phosphorylation results had to be further simplified to effects 
at single sites. The results of artMS/MSstats are fold changes of specific 
phosphorylation site groups detected within peptides, so one phospho-
rylation site can have multiple measurements if it occurs in different 
phosphorylation site groups. This complex dataset was reduced to a 
single fold change per site by choosing the fold change with the lowest 
p-value, favoring those detected in both conditions being compared 
(i.e. non-infinite log2 fold change values). This single-site dataset was 
used as the input for kinase activity analysis and enrichment analysis. 
Protein abundance data was similarly simplified when a single peptide 
was mapped to multiple proteins; that is, by choosing the fold change 
with the lowest p-value, favoring those detected in both conditions 
being compared (see Table S1 for final refined data).

Targeted proteomics for Orf9b phosphorylation
A spectral library was constructed from the DIA data to obtain Orf9b 
specific transitions. We used 4 proteotypic Orf9b peptides to unbiasedly 
assess Orf9 abundance, while for Orf9b phosphorylation we included 
both S50 (LGS(+80)PLSLNMAR) and S53 (LGSPLS(+80)LNMAR) and 
two phosphosites from heat shock proteins as internal controls for 
normalization and to remove any bias due to the IMAC enrichment. All 
samples were acquired on a Orbitrap Tribrid Lumos (Thermo Fisher) con-
nected to a nanoLC easy 1200 (Thermo Fisher). For the whole cell lysate 
samples, the peptides were separated in 50 minutes at 0.3 ul/min with 
the following gradient: 2% B (0.1% FA in MeCN) to 33% B for 40 minutes, 
followed by another linear gradient from 33% to 90% of B (1 min) and an 
isocratic wash at 90% was performed for kept for 10 minutes. Peptides 
were injected through self-packed columns (25 cm) packed with 1.9 uM 
beads (reprosil, Waters). The column tip was kept at 2 kV and 275 C. The 
mass spectrometer was operated in positive mode (OT/OT) and each MS1 
scan was performed with a resolution of 120,000 at 400 m/z between 
350 and 1100 m/z. Peptide ions were accumulated for 50 ms or until the 

ion population reached an AGC of 5e5. Orf9b peptides (n=4) within the 
inclusion list were fragmented using stepped high-collisional energy 
dissociation (HCD) with a normalized energy of 33 and a spread of +-3%. 
For precursor ion selection an isolation window of 1.4 Da was used and 
the fragments after HCD were analyzed in the Orbitrap at 60,000 resolu-
tion (400 m/z). For targeted analysis of Orf9b phosphorylation we used 
the enriched samples with identical LC, source and MS configuration. 
The samples were separated in 40 minutes at 0.3 ul/min to concentrate 
the analytes in narrower peaks and increase the signal. The gradient 
employed was from 2% B to 25% in 30 minutes then B was increased to 
90% in 10 minutes and the column was washed for 10 minutes. The mass 
spectrometer was operated in positive mode and targeted acquisition 
(PRM). Specifically, one MS1 scan (120,000 resolution at 400 m/z, 1e6 
AGC, 256 ms IT, mass range 500-800 m/z) was followed by four unsched-
uled targeted scans per cycle. An isolation width of 1.6 Da was used per 
precursor and isolated peptides were fragmented using stepped HCD 
(33% +-3%). Each MS2 was acquired with a resolution of 60,000 and ions 
were accumulated for 118 ms or until reaching an AGC of 5e5. Following 
acquisition, each experiment was analyzed separately in Skyline. Under 
transition settings the MS1 filter was set to count and 3 precursors were 
used (10 ppm mass error). The MS2 filtering was set to Orbitrap and the 
resolution was set to 60,000 (400 m/z). For the phosphorylation site 
experiments both b/y and a/z ions were used, while for the abundance 
experiments only y ions were included. Peaks were manually inspected 
for integration and boundaries refined if necessary. For Orf9b S50/S53 
the presence of the proline in the peptide sequence resulted in a split 
chromatographic peak between the two isomers and the second peak 
was used for integration for all samples. For both phosphoisomers only 
phophosite specific ions were used for quantification (i.e y5-y9/b6-b10 
for S53 and y9-y5/b2-b6 for S50). Following export of the transition-level 
intensities, fragments having a S/N < 10 (for the abundance data) and 
S/N lower < 2 (for the phospho data) were removed.

RNA quality control
Thirty total RNA samples were submitted for RNA quality control. Total 
RNA samples were run on the Agilent Bioanalyzer, using the Agilent RNA 
6000 Nano Kit. Three samples were excluded from library preparation 
due to severe degradation and/or low amounts of RNA present.

Library preparation for RNAseq
Twenty-seven total RNA samples were processed using the Illumina 
Stranded Total RNA w/Ribo-Zero Plus assay. One-hundred nanograms 
of each total RNA sample (quantitated on the Invitrogen Qubit 2.0 Fluo-
rometer using the Qubit RNA HS Assay Kit) was subjected to ribosomal 
RNA (rRNA) depletion through an enzymatic process, which includes 
reduction of human mitochondrial and cytoplasmic rRNAs. Following 
rRNA depletion and purification, RNA was primed with random hexam-
ers for first-strand cDNA synthesis, then second-strand cDNA synthesis. 
During second-strand cDNA synthesis, deoxyuridine triphosphate 
(dUTP) was incorporated in place of deoxythymidine triphosphate 
(dTTP) to achieve strand specificity in a subsequent amplification 
step. Next, adenine (A) nucleotide was added to the 3’ ends of the blunt 
fragments to prevent ends from ligating to each other. The A-tail also 
provides a complementary overhang to the thymine (T) nucleotide 
on the 3’ end of the adapter. During adapter ligation and amplifica-
tion, indexes and adapters were added to both ends of the fragments, 
resulting in 10bp, dual-indexed libraries, ready for cluster generation 
and sequencing. The second-strand was quenched during amplifica-
tion due to the incorporation of dUTP during second-strand cDNA 
synthesis, allowing for only the antisense strand to be sequenced in 
Read 1. Thirteen cycles of amplification were performed.

Library quality control and quantification for RNAseq
Each library was run on the Agilent Bioanalyzer, using the Agilent High 
Sensitivity DNA Kit, to assess the size distribution of the libraries. They 
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were quantitated by quantitative polymerase chain reaction (qPCR) 
using a Roche KAPA Library Quantification Complete Kit (ABI Prism), and 
run on the Applied Biosystems QuantStudio 5 Real-Time PCR System.

Sequencing for RNAseq
Each library was normalised to 10nM, then pooled equimolarly for a 
final concentration of 10nM. Pooled libraries were submitted to the 
University of California San Francisco Center for Advanced Technology 
(UCSF CAT) for one lane of sequencing on the Illumina NovaSeq 6000 
S4 flow cell. The run parameter was 100x10x10x100bp.

Viral RNA quantification from RNASeq Dataset
Viral RNA was characterised by the junction of the leader with the 
downstream subgenomic sequence. Reads containing possible junc-
tions were extracted by filtering for exact matches to the 3’ end of the 
leader sequence “CTTTCGATCTCTTGTAGATCTGTTCTC” using the 
bbduk program in the BBTools package (BBTools - Bushnell B. - source-
forge.net/projects/bbmap/). This subset of leader-containing reads 
were left-trimmed to remove the leader, also using bbduk. The filtered 
and trimmed reads were matched against SARS2 genomic sequence 
with the bbmap program from BBtools with settings (maxindel=100, 
strictmaxindel=t, local=t). The left-most mapped position in the ref-
erence was used as the junction site. All strains were mapped against 
a reference SARS-Cov-2 sequence (accession NC_045512.2), except 
Alpha was mapped against a Alpha-specific sequence (GISAID: EPI_
ISL_693401) and the resultant positions adjusted to the reference based 
on a global alignment. Junction sites were labeled based on locations 
of TRS sequences, or other known site with a +/- 5 base pair window as 
follows (genomic = 67, S = 21553, orf3 = 25382, E = 26237, M = 26470, 
orf6 = 27041, orf7 = 27385, orf8 = 27885, N = 28257, orf9b = 28280, N* = 
28878). Junction reads were counted per position, a pseudocount of 0.5 
was added at all positions, counts between replicates and strains were 
normalised to have equal “genomic” reads, and counts were averaged 
across replicate samples. Means and standard errors of counts averaged 
across replicates were subsequently calculated. To calculate the ratios 
between Alpha and VIC, counts averaged across replicates from Alpha 
were divided in a condition and time point matched fashion by values 
from VIC or IC19. The standard error (se) of the ratios was calculated 
as (A/B) * sqrt((se.A/A)² + (se.B/B)²).

Host RNA analysis
All reads were mapped to the human host genome (ensembl 101) using 
HISAT2 aligner69. Host transcript abundances were estimated using 
human annotations (ensembl 101) using StringTie70. Differential gene 
expression was calculated based on read counts extracted for each pro-
tein coding gene using featureCount and significance was determined 
by the DESeq2 R package71. On average, we quantified 15,000-16,000 
mRNA transcripts above background levels (Extended Data Fig. 3d).

Viral protein quantification
Median normalized peptide feature (peptides with unique charge 
states and elution times) intensities (on a linear scale) were refined 
to the subset that mapped to SARS-CoV-2 protein sequences using 
Spectronaut (see Methods). Peptide features found in the same bio-
logical replicate (i.e. due to different elution times, for example) were 
averaged. Next, for each timepoint separately, we selected the subset 
of peptides that were consistently detected in all biological replicates 
across all conditions (no missing values), isolating the set of peptides 
with the best comparative potential. We then summed all peptides 
mapping to each viral protein for each time point separately which 
resulted in our final protein intensity per viral protein per time point 
per biological replicate. Resulting protein intensities were averaged 
across biological replicates and standard errors were calculated for 
each condition. To calculate the ratios between Alpha and VIC, aver-
aged intensities for Alpha were divided in a condition and time point 

matched fashion by values from VIC or IC19. The standard error (se) of 
the ratios was calculated as (A/B) * sqrt((se.A/A)² + (se.B/B)²).

Kinase activity analysis of phosphoproteomics data
Kinase activities were estimated using known kinase-substrate rela-
tionships in literature72. The resource comprises of a comprehensive 
collection of phosphosite annotations of direct substrates of kinases 
obtained from six databases, PhosphoSitePlus, SIGNOR, HPRD, NCI-PID, 
Reactome, and the BEL Large Corpus, and using three text-mining 
tools, REACH, Sparser, and RLIMS-P. Kinase activities were inferred as a 
Z-score calculated using the mean log2FC of phosphorylated substrates 
for each kinase in terms of standard error (Z = [M - u] / SE), comparing 
fold changes in phosphosite measurements of the known substrates 
against the overall distribution of fold changes across the sample. A 
p-value was also calculated using this approach using a two-tailed Z-test 
method. This statistical approach has been previously shown to per-
form well at estimating kinase activities29,73. We collected substrate 
annotations for 400 kinases with available data. Kinase activities for 
kinases with 3 or more measured substrates were considered, leaving 
us with 191 kinases with activity estimates in at least one or more infec-
tion time points. Kinases were clustered based on pathway similarity by 
constructing a kinase tree based on co-membership in pathway terms 
(from CP “Canonical Pathways” MSigDBv7.1).

Pathway enrichment analysis
The pathway gene sets were obtained from the CP (i.e. “Canonical 
Pathways”) category of Molecular Signature Database (MSigDBv7.1)26. 
We used the same approach for this pathway enrichment analysis as 
we used for the kinase activity analysis. Namely, we inferred pathway 
regulation as Z-score and an FDR-corrected (0.05) p-value calculated 
from a Z-test (two-tailed) comparing fold changes in phosphosite, 
protein abundance, or RNA abundance measurements of genes des-
ignated for a particular pathway against the overall distribution of 
fold changes in the sample. All resulting terms were further refined 
to select non-redundant terms by first constructing a pathway term 
tree based on distances (1-Jaccard Similarity Coefficients of shared 
genes in MSigDB) between the terms. The pathway term tree was cut 
at a specific level (h = 0.8) to identify clusters of non-redundant gene 
sets. For results with multiple significant terms belonging to the same 
cluster, we selected the most significant term (i.e. lowest adjusted 
p-value). Next, we filtered out terms that were not signifƒicant (FDR 
corrected p-value < 0.05) for at least one contrast. Terms were ranked 
according to either the absolute value z-score across contrasts that 
included Alpha (see Fig. S3a-c) or by average -log10(p-values) across 
time-matched contrasts involving Alpha (see Fig. 2b).

Transcription factor activity analysis
Transcription factor activities were estimated from RNAseq data using 
DoRothEA74 which provides a comprehensive resource of TF-target 
gene interactions and annotations indicating confidence level for each 
interaction based on the number of supporting evidence. We restricted 
our analysis to A, B, and C levels which comprise the most reliable inter-
actions. For the TF activity enrichment analysis, VIPER75 was executed 
with the t-statistic derived from the differential gene expression analy-
sis between variant infected and controls (wild-type) infected cells. 
Transcription factor activity is defined as the normalised enrichment 
scores (NES) derived from the VIPER algorithm. VIPER algorithm was 
run with default parameters except for the eset.filter parameter which 
was set to FALSE and considered regulons with at least five targets.

Selection of interferon stimulated genes (ISGs)
Interferon stimulated genes (ISGs) were taken from a prior experimen-
tal study27 and annotated as ISGs. To this list of 38 genes, we added the 
following based on manual curation from the literature: IFI16, IFI35, 
IFIT5, LGALS9, OASL, CCL2, CCL7, IL6, IFNB1, CXCL10, and ADAR.
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Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Abundance proteomics and phosphoproteomics datasets have been 
deposited to the ProteomeXchange Consortium via the PRIDE part-
ner repository with the dataset identifier PXD026302. Reviewers may 
access the raw data with the username “reviewer_pxd026302@ebi.
ac.uk” and password “KBANyPDu”. Raw RNAseq data files are available 
from the accession number E-MTAB-11275. Processed proteomics and 
RNAseq data are available as supplementary information.

Code availability
No new algorithms were developed for this project and prior algorithms 
used were cited in the methods.
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Extended Data Fig. 1 | SARS-CoV-2 Alpha variant replicates similarly in 
Calu-3 cells than early-lineage isolates. a. E copies/ml (left), TCID50/ml 
(centre) and infectious units per genome (TCID50/E copies) (right) were 
measured in viral stocks. b, c and d. Calu-3 cell infection with 5 E copies/cell. 
Viral replication (b), % infection (c), and infectious virion production (d) are 
shown. e. Quantification of E gene negative sense standard RNA in the presence 
and absence of 107 positive sense E RNA copies. Positive sense E primer set run 
with negative sense standards, observed at the limit of detection. f. Negative 
sense E copies in cells from (b). g and h. dsRNA detection by single cell 
immunofluorescence in cells infected with 2000 E copies/cell. Representative 

images at 24 hpi (g) and quantification of dsRNA-positive cells (h) are shown. 
Shown are mean +/- SEM of one of three representative experiments performed 
in triplicate. For (g) representative images from two independent experiments, 
quantified in (h), are shown. Scale bars are 50μm. Two Way ANOVA (b,c,d,f) or 
One Way ANOVA with a Tukey post-test were used. Blue stars indicate 
comparison between Alpha and VIC (blue lines and symbols), grey stars 
indicate comparison between Alpha and IC19 (grey lines and symbols).  
*(p<0.05), **(p<0.01), ***(p<0.001), ****(p<0.0001). ns: non-significant. E: viral 
envelope gene. hpi: hours post infection. LOD, limit of detection.
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Extended Data Fig. 2 | SARS-CoV-2 Alpha variant antagonises innate 
immune activation more efficiently than early-lineage isolates. a. IFNβ 
gene expression (left) and protein secretion (right) from cells in Extended Data 
Fig 1b. b. HAE cells were infected with 2000 E copies/cell of VIC. E copies were 
measured in apical washes of infected cultures. c. Calu-3 infection at 2000 E 
copies/cell after 8h pre-treatment with IFNβ. Infection levels are shown 
normalised to untreated controls at 24 hpi. d.IFNβ and ISGs expression in HAE 
cells infected with 2000 E copies/cell of IC19 or Alpha variant normalised to 

intracellular E copies for each sample. Shown are mean +/- SEM of one of three 
representative experiments performed in triplicate. For d, n=6, two 
independent donors. Two Way ANOVA (a,c) or One Way ANOVA (d) with 
Wilcoxon matched-pairs signed rank test were used. Blue stars indicate 
comparison between Alpha and VIC (blue lines and symbols), grey stars 
indicate comparison between Alpha and IC19 (grey lines and symbols). * 
(p<0.05), ** (p<0.01), *** (p<0.001), **** (p<0.0001). ns: non-significant. E: viral 
envelope gene. hpi: hours post infection.
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Extended Data Fig. 3 | Omics data quality control and pathway 
enrichments. a. Significantly changing genes for RNA, proteins for protein 
abundance, and phosphorylation sites for phosphoproteomics data. 
Significance was defined as abs(log2FC)>1 and adjusted p-value<0.05. Red 
depicts positive log2 fold changes whereas blue depicts negative log2 fold 
changes. b. Principal components analysis (PCA) on normalised RNA 
transcripts per million (TPM), protein intensities, or phosphorylation site 
intensities. Non-finite values were removed and detections (transcripts, 
proteins, or phosphorylation sites) not shared (non-finite) between all 
conditions were discarded prior to analysis. Colored numbers indicate 
biological replicates. c. Pairwise Pearson’s correlation between RNA, protein, 

or phosphorylation site abundance among replicates within the same 
condition (red) or between distinct conditions (black). d. Number of genes 
expressed above baseline in RNAseq dataset per replicate. e. Number of 
peptides and proteins detected per replicate in the abundance proteomics 
dataset. f. Number of phosphorylated peptides and corresponding proteins 
from the phosphoproteomics dataset.g. Fraction of peptides from protein 
abundance (left) or phosphoproteomics (right; phosphorylated peptides) that 
overlap between two replicates. h. Correlation between Log2 fold-change 
(log2FC) phosphorylation sites and log2FC abundance of the corresponding 
protein. Dots are colored according to the comparison between conditions.
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Extended Data Fig. 4 | Omics data highlights recruitment of innate immune 
signaling. a. Gene set enrichment analysis based on log2FC method using RNA 
dataset (as in Fig. 2b). Ranking is based on the average of the absolute value 
z-scores across the indicated contrasts involving Alpha (per row). Black 
borders indicate an adjusted p-value<0.05. b. Same as in a, but for abundance 
proteomics dataset. c. Same as in a, but for phosphoproteomics dataset. If a 
protein possessed multiple phosphorylation sites, the maximum absolute 
value log2FC was used as the representative value for the protein. Finite values 

(non-infinite) were prioritised over quantitative values. d. Expression of 
interferon-stimulated genes from Lui et al (2018)27 (see Methods) using the 
RNAseq dataset. Significant fold changes with an adjusted p-value<0.05 are 
indicated with black borders. e. Same as in (a) using the abundance proteomics 
dataset. N.D. indicates proteins either not detected in one condition (thus, Inf 
or -Inf) or not detected in both conditions. f. RNA expression per biological 
replicate of interferon-stimulated genes (ISGs) for each virus versus mock.
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Extended Data Fig. 5 | SARS-CoV-2 Alpha variant infection results in lower 
IFN III and pro-inflammatory responses than first wave isolates. a. Calu-3 
cells were infected with 250 E copies/cell and IFNL1 and IFNL3 expression 
measured at 24 hpi. b. Secretion of CXCL10, IL6 and CCL5 by infected cells at 48 
hpi. c and d. Calu-3 cells were infected with (c) 5000 E copies/cell or (d) 5 E 
copies/cell. Expression of TNF, CCL2, IL6, IL8 and CCL3 were measured. Data 
shown are mean +/- SEM of one of three representative experiments performed 

in triplicate. One Way ANOVA with a Tukey post-comparison test (a,b) or Two 
Way ANOVA (c,d) were used. Blue stars indicate comparison between Alpha and 
VIC (blue lines and symbols), grey stars indicate comparison between Alpha 
and IC19 (grey lines and symbols). * (p<0.05), ** (p<0.01), *** (p<0.001), **** 
(p<0.0001). ns: non-significant. E: viral envelope gene. hpi: hours post 
infection.
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Extended Data Fig. 6 | Kinase and transcription factor activity analysis.  
a. Full kinase activity analysis of indicated contrasts with z-score>2. Kinases 
were separated using k-means clustering, which naturally reveals groups 
depicting kinases downregulated for the entire time course (“Down”), 
downregulated early and upregulated late (“Down-Up”), upregulated early and 
downregulated late (“Up-Down”), or upregulated or constant throughout the 
time course (“Up”). Panel on the right depicts the average Z-score for each 
distinct cluster per time point, collapsing across Alpha/VIC and Alpha/IC19 
comparisons. b. Correlation between the calculated kinase activity Z-score and 
protein (left) or RNA (right) abundance log2FC for kinases with estimated 

activities in our dataset. Vertical dashed lines indicate kinase activity of +/-2, 
horizontal dashed lines indicate protein log2FC of +/-1. Colors represent 
comparisons between viruses and time points as indicated. c. Detected 
substrates known to be phosphorylated by TBK1. Log2FC of each 
phosphorylation site is depicted. Those not detected are indicated in grey.  
d. Transcription factor (TF) activities were estimated from the RNAseq dataset 
using known TF-target gene interactions. Included are TFs with a NES>2.5. TF 
are clustered using ward hierarchical clustering based on similar activity 
patterns across time.
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Extended Data Fig. 7 | Expression of viral RNA and protein for SARS-CoV-2 
variants. a. Log2 ratio of Alpha to IC19 subgenomic RNA (sgRNA) abundance as 
determined from the RNAseq dataset. b. Log2 ratio of Alpha to IC19 viral 
proteins. Peptide intensities are summed per viral protein (n=3).  
c. Quantification of sgRNAs for M, S, Orf8, Orf7a, Orf3a, E and N* from the 
RNAseq dataset. Counts are normalised to genomic RNA abundance at each 
time point and virus. d. Quantification of Orf3a (left) or S (right) sgRNA 

abundance via RT-qPCR. e. Summed peptides per viral protein for M, S, Nsp1, 
Orf7b, and Orf3b. f. Western blot quantification of Orf6 and N protein in 
infected cells at 24 hpi (n=3). g. Pie chart depicting proportion of total sgRNA 
mapping to each viral sgRNA for IC19. h. Mean +/- SEM are shown. Comparison 
of percentages of total sgRNA mapping to each viral sgRNA across Alpha, VIC, 
and IC19. * (p<0.05), ** (p<0.01), *** (p<0.001), **** (p<0.0001). ns: 
non-significant, ND, not detected.
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Extended Data Fig. 8 | Examples of leader-containing reads for Orf9b and N 
from RNAseq dataset. a, b, c. Representative sequence for Orf9b (top) and N 
(bottom) sgRNA from Alpha (a), VIC (b) and IC19 (c). Leader sequences to 
identify sgRNAs are highlighted in yellow. The following sequence is used to 
differentiate Orf9b versus N sgRNAs. Orf9b and N start codons shown in 

maroon. The site of the N-protein D3L mutation is indicated in green, resulting 
in increased similarity to the transcriptional regulatory sequence (TRS) for 
Alpha. Read counts of Orf9b and N are indicated to the right. Counts are 
normalized to mean genomic reads per replicate.
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Extended Data Fig. 9 | Western blot densitometry quantification for Orf9b 
immunoprecipitation with Tom70. Densitometry quantification of two 
western blot experimental repeats of Orf9b immunoprecipitation with Tom70 
(as in Fig. 4d).
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All MS data was acquired on a Thermo Fisher Scientific Q-Exactive Plus mass spectrometer using the Thermo software Xcalibur (4.2.47) and 
Tune (2.11 QF1 Build 3006). RNA samples were run on an Illumina NovaSeq 6000 S4 flow cell. The run parameter was 100x10x10x100bp.

Data analysis Raw mass spectrometry data were searched using Spectronaut whereas data normalization and quantitative comparisons were derived using 
the MSstats software package. RNA data was analyzed using the BBTools package (sourceforge.net/projects/bbmap/). The R statistical toolbox 
and GraphPad were used to perform kinase activity analysis, transcription factor activity analysis, and to generate figures.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Abundance proteomics and phosphoproteomics datasets have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the 
dataset identifier PXD026302. Reviewers may access the raw data with the username “reviewer_pxd026302@ebi.ac.uk” and password “KBANyPDu”. Raw RNAseq 
data files are available from the corresponding authors upon request. Processed proteomics and RNAseq data are available as supplementary information.
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size It is an accepted practice in the field of global omics technologies that biological triplicate measurements are sufficient for measuring 
significantly changing RNA, protein, and post-translational modifications. At least three biological replicates were independently prepared for 
each condition (virus and time point).

Data exclusions Three RNA samples (across all conditions) were excluded from library preparation due to severe degradation and/or low amounts of RNA 
present. Two proteomics samples were excluded for poor data quality as assessed by number of detected peptides and PCA analysis.

Replication Reproducibility between bioreplicates can be measured by the degree of variance explained by matching LC-MS feature identifications 
(peptide and charge) between replicates. We used standard artMS procedures. First, LC-MS features were identified and quantified by 
MaxQuant in each LC-MS run. Next, the strength of effect was measured as a correlation coefficient (Pearson’s r) between each pair of LC-MS 
runs, pairing individual feature intensities between runs by their peptide and charge identifications. Correlation patterns between LC-MS runs 
from biological replicates are clustered along the x and y axes, showing both high correlation coefficients (near 1.0) as well as a trend for most 
same-bait replicates to cluster by similarity with each other, indicating consistent and bait-specific results. 
For virus assays, all findings were replicated in a minimum of 2 distinct experiments. In addition, multiple viral isolates of Alpha were assessed 
to ascertain the reproducibility of results.

Randomization The order of sample processing was randomly determined while biological replicates were run one after the other. All samples were 
processed and collected on the same instruments in a short time frame (roughly 3 weeks time).  Therefore instrument performance did not 
have time to drift.  QCloud was used to control instrument longitudinal performance during the project. The same procedures were applied 
for the RNA sequencing studies.

Blinding Blinding is not relevant to the data because our data are acquired and processed systematically with established computational pipelines, 
excluding human bias. Blinding was not performed for the follow up viral infectivity experiments because blinding was not needed to remove 
bias.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used For detection of N, Orf6, spike and tubulin expression:  rabbit-anti-SARS spike (Invitrogen, PA1-411-1165, 0.5ug/ml), rabbit-anti-Orf6 

(Abnova, PAB31757, 4ug/ml), Cr3009 SARS-CoV-2 cross-reactive human-anti-N antibody (1ug/ml) (a kind gift from Dr. Laura McCoy, 
UCL) , mouse-anti-alpha-tubulin  (SIGMA, clone DM1A) followed by IRDye 800CW or 680RD secondary antibodies (Abcam, goat anti-
rabbit, goat anti-mouse or goat anti-human). 
For Co-IP: Monoclonal mouse anti-FLAG M2 antibody (Sigma Aldrich, F1804), Polyclonal rabbit anti-FLAG antibody (Sigma Aldrich, 
F7425).

Validation A negative control with no infection or overexpression of tagged protein was included in each experiment to ensure low non-specific 
binding of the antibodies.
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Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) Calu-3 cells were purchased from ATCC (HTB-55) and Caco-2 cells were a kind gift from Dr. Dalan Bailey (Pirbright Institute, 
USA). Hela-ACE2 cells were a kind gift from Dr. James E Voss (TSRI, USA). HEK293T cells were a kind gift from Jeremy Luban.

Authentication All cell lines were originally purchased from ATCC. ATCC possesses rigorous standards for cell line authentication using short-
tandem repeat profiling. This confirms the identify of cells and detects misidentified, cross-contaminated, or genetically 
drifted cells. 

Mycoplasma contamination All cell lines are tested for mycoplasma contamination regularly, every 6 months.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in this study.
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