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Doctor of Philosophy (Molecular Biology), May 2012, 162 pp., 7 tables, 29 figures, chapter 

references. 

The activity of plant 9-lipoxygenases (LOXs) influences the outcome of Arabidopsis 

thaliana interaction with pathogen and insects. Evidence provided here indicates that in 

Arabidopsis, 9-LOXs facilitate infestation by Myzus persicae, commonly known as the green 

peach aphid (GPA), a sap-sucking insect, and infection by the fungal pathogen Fusarium 

graminearum. In comparison to the wild-type plant, lox5 mutants, which are deficient in a 9-

lipoxygenase, GPA population was smaller and the insect spent less time feeding from sieve 

elements and xylem, thus resulting in reduced water content and fecundity of GPA. LOX5 

expression is induced rapidly in roots of GPA-infested plants. This increase in LOX5 expression 

is paralleled by an increase in LOX5-synthesized oxylipins in the root and petiole exudates of 

GPA-infested plants. Micrografting experiments demonstrated that GPA population size was 

smaller on plants in which the roots were of the lox5 mutant genotype. Exogenous treatment of 

lox5 mutant roots with 9-hydroxyoctadecanoic acid restored water content and population size of 

GPA on lox5 mutants. Together, these results suggest that LOX5 genotype in roots is critical for 

facilitating insect infestation of Arabidopsis. In Arabidopsis, 9-LOX function is also required for 

facilitating infection by F. graminearum, which is a leading cause of Fusarium head blight 

(FHB) disease in wheat and other small grain crops. Loss of LOX1 and LOX5 function resulted 

in enhanced resistance to F. graminearum infection. Similarly in wheat, RNA interference-

mediated silencing of the 9-LOX homolog TaLpx1, resulted in enhanced resistance to F. 

graminearum. Experiments in Arabidopsis indicate that 9-LOXs promote susceptibility to this 
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fungus by suppressing the activation of salicylic acid-mediated defense responses that are 

important for basal resistance to this fungus.  

The lox1 and lox5 mutants were also compromised for systemic acquired resistance 

(SAR), an inducible defense mechanism that is systemically activated throughout a plant in 

response to a localized infection. The lox1 and lox5 mutants exhibited reduced cell death and 

delayed hypersensitive response when challenged with an avirulent strain of the bacterial 

pathogen Pseudomonas syringae pv tomato. LOX1 and LOX5 functions were further required for 

the synthesis as well as perception of a SAR-inducing activity present in petiole exudates 

collected from wild-type avirulent pathogen-challenged leaves. Taken together, results presented 

here demonstrate that 9-LOX contribute to host susceptibility as well as defense against different 

biotic stressors.  
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1 

CHAPTER 1  

INTRODUCTION 

In the year 2012, the world’s population is expected to hit the 7 billion mark and is 

projected to grow and plateau at approximately 9 billion by the year 2050. Global food 

production will need to increase by an estimated 50% in order to meet the world’s food demands 

(Godfray et al., 2010; Chakraborty and Newton, 2011). Several constraints will have to be 

overcome to meet the increased demand. The loss of agricultural land to degradation and 

conversion to non-food production, the continued impact of pests and disease, lack of availability 

of good quality water for agriculture coupled with climate change are already posing major 

challenges in maintaining let alone increase food production (Godfray et al., 2010). The Green 

Revolution resulted in over 70% increase in yield in the past as a result of the development of F1 

hybrids of maize and semi-dwarf varieties of rice that responded to more irrigation and increased 

fertilizer application. Yet an estimated 1.02 billion people went hungry in 2009, the highest ever 

level of world hunger (http://www.ifad.org/). Therefore, radical changes in food production, 

storage, processing and distribution are required to meet the challenge of feeding the world’s 

population. 

Pests and diseases continue to impact food production and quality despite the many 

decades of research by crop protection scientists on the development of improved methods for 

their control. An estimated 30-40% of crop yield is lost annually in the fields even in crops 

where pesticides and cultivars with genetic resistance to pests and diseases are used (Oerke, 

2006). The widespread use of agro-chemicals such as fungicides and pesticides to the tune of 3 

billion kg every year (Pimentel, 2009), has enabled significant increases in crop yields but has 

also resulted in the development of more aggressive or chemical-resistant biotypes which can 
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potentially cause devastating losses. The dependence on pesticides has also resulted in major 

costs to the environment. Improved crop protection strategies to reduce the environmental impact 

of pesticides and still prevent losses due to pests and pathogens are needed to increase 

production and make a substantial contribution to food security.  

A major advance in plant biology that will lead to improved and novel approaches to crop 

protection is an understanding of the genetic and molecular basis of plant immune response to 

the various biotic stressors. Knowledge about the regulatory genes, signal molecules and defense 

pathways in plants, will aid in the development of new crop varieties by conventional breeding 

and/or genetic engineering with increased resistance while at the same time reducing our 

dependence on pesticides.  

 

1.1 The Plant Immune System 

In nature, plants are continually exposed to attacks from various biotic agents like 

bacteria, fungi, oomycetes, viruses and insects. The outcome of the interaction between the plant 

and the pest/pathogen is largely determined by preformed constitutive defenses coupled with 

specific defenses employed against specific invaders (induced defenses). In a majority of the 

cases, the plant is able to counter and prevent colonization by pests/pathogens (non-host 

interactions). However, some microbes and insects have acquired genetic adaptations that enable 

them to overcome or tolerate the plants’ constitutive and induced defenses. These pathogens and 

insect pests are then able to obtain nutrients from plants enabling them to establish and grow 

resulting in disease and damage of the host plant.  

Plants are involved in a continuous co-evolutionary struggle for dominance or ‘arms race’ 

with the pests and pathogens that attack them. In the absence of an adaptive immune system, 
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plants have evolved an innate immune system that recognizes the presence of potential 

pathogens and initiates effective defenses, whereas successful pathogens have evolved to 

suppress host responses. Plants integrate mechanical and chemical cues associated with insect 

and microbial pathogen attack and orchestrate defenses that are specific to each (Walling, 2000; 

De Vos et al., 2005; Glazebrook, 2005). This first line of defense against a pathogen that is able 

to overcome the plants constitutive defenses is the primary immune response. This response is 

activated upon the perception of highly conserved molecules that are common to invading 

organisms called pathogen associated molecular patterns (PAMPs) (Jones and Dangl, 2006). The 

recognition of PAMPs by plant pattern-recognition receptors (PRRs), results in the activation of 

characterized downstream signaling events regulated by salicylic acid (SA), jasmonic acid (JA) 

and ethylene (ET) resulting in basal resistance or PAMP-triggered immunity (PTI) (Glazebrook, 

2005; Chisholm et al., 2006; Jones and Dangl, 2006). However, successful plant pathogens have 

acquired adaptations in the form of effector molecules that enable them to repress PTI and allow 

colonization of the plant. Plants in turn have evolved resistance (R) genes that enable them to 

identify pathogen specific effectors and initiate a second line of immune response or effector-

triggered immunity (ETI) (Chisholm et al., 2006; Jones and Dangl, 2006). The defense responses 

activated by the plant depends on the mechanisms used for nutrient retrieval and the lifestyle of 

the attacker. Despite the differing mechanisms utilized by microbes and insects to procure 

nutrients, the plants’ innate immune responses show conservation (Walling, 2009). The ability of 

the pathogen to suppress plant defenses and the plants ability to recognize and initiate timely 

defense against the pathogen determines the final outcome of the interaction.  

The activation of ETI, mediated by R-gene signaling at the site of infection is often 

accompanied by a long-lasting and induced disease resistance in the distal healthy parts of the 
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plant (Durrant and Dong, 2004). This form of immunity protects distal plant parts and even the 

subsequent generation of progeny in certain cases from a broad spectrum of attackers is referred 

to as systemic acquired resistance (SAR) (Walters et al., 2007; Jaskiewicz et al., 2010; Luna et 

al., 2012). SAR is characterized by the generation of a mobile signal generated at the site of 

infection that establishes systemic immunity. Another example of this form of acquired 

resistance, induced systemic resistance (ISR), occurs upon the colonization of roots by beneficial 

soil borne microorganisms such as nonpathogenic rhizobacteria and mycorrhizal fungi leading to 

induction of pathogen resistance in above ground tissues (van Loon et al., 1998; Pozo and 

Azcon-Aguilar, 2007). SAR and ISR differ with respect to the nature of the elicitor and also the 

regulatory pathways involved which are mediated by signaling pathways controlled the 

phytohormones SA and JA/ET respectively (Walters et al., 2007).  

 

1.1.1 Systemic Acquired Resistance 

SAR is induced by pathogens that cause necrosis, either as disease symptom or as a part 

of the hypersensitive response (HR) triggered during ETI. HR is associated with the rapid 

production of reactive oxygen species (ROS) and programmed cell death at the site of infection 

providing a physical and chemical barrier that limits further spread of the pathogen. Although, an 

HR is not essential for SAR and the generation of the long-distance signal (Cameron et al., 1994; 

Mishina and Zeier, 2007), its appearance advents the onset of SAR in most cases. At the 

molecular level, SAR is characterized by the activation of a specific set of pathogenesis-related 

(PR) genes encoding proteins with antimicrobial properties in both local infected and distal 

uninfected tissues (Van Loon et al., 2006). This is associated with increased accumulation of SA 

in local and systemically in distant tissues. The importance of SA in SAR is further highlighted 
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by genetic studies with mutants and transgenic plants that are impaired in SA signaling. The 

activation of PR gene expression and development of SAR is impaired in these lines highlighting 

the importance of SA in SAR signaling (Durrant and Dong, 2004). A key component of SA-

mediated signaling during SAR is regulated by the protein NPR1 (NONEXPRESSOR OF PR 

GENES1) (Dong, 2004; Durrant and Dong, 2004). The gene was identified in several genetic 

screens conducted to identify genes involved in SA signaling (Cao et al., 1994; Delaney et al., 

1995; Glazebrook et al., 1996; Shah et al., 1997). Arabidopsis npr1 mutants are able to 

accumulate SA upon pathogen infection but fail to exhibit SAR (Delaney et al., 1995; Shah et al., 

1997). Upon activation by SA, NPR1 along with TGA transcription factors activates the 

expression of PR and other genes that are necessary for SAR (Dong, 2004).  

The systemic enhancement of defenses during SAR implies the presence of a mobile 

signal(s) that is generated at the site of infection and aids in the establishment of SAR in distal 

uninfected plant parts. In recent years, major advances have been made in identifying the nature 

of the mobile signal. Several metabolites have been proposed as candidate SAR signals. Lipids 

or lipid-derived molecules have been implicated in this process (Maldonado et al., 2002; Nandi 

et al., 2004; Chaturvedi et al., 2008). In tobacco plants, an SA derivative, methyl salicylate and 

an unidentified lipid-derived molecule act as the mobile signal (Park et al., 2007; Liu et al., 

2011). The metabolite, azelaic acid was identified in petiole exudates (pet-ex) of plants in which 

SAR was induced suggesting that it may be a mobile signal although millimolar quantities of the 

compound are required (Jung et al., 2009). Recently, a diterpenoid, dehydroabietinal, was 

identified in petiole exudates of plants treated with an avirulent pathogen which is able to initiate 

SAR in a SA-dependant manner in picomolar quantities (Chaturvedi et al., 2012). The 
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identification of several potential signal molecules suggests that plants have evolved several 

mechanisms by which they can efficiently induce SAR in response to various pathogens. 

The continuous activation of defenses in the plant has a high metabolic cost resulting in 

reduced plant fitness. In economically important crops, this is undesirable since reduced fitness 

results in low yields. SAR is however, a widely observed phenomenon in plants resulting in a 

state of heightened alertness by which plants are able to combat pathogens more quickly and 

effectively with seemingly low impact on metabolic costs and fitness (Heidel et al., 2004; Traw 

et al., 2007). Recent evidence suggests that the large scale chromatin remodeling that occurs 

during SAR allows for epigenetic inheritance of the state of heightened alertness to the next 

generation of offspring (Jaskiewicz et al., 2010; Luna et al., 2012; Slaughter et al., 2012). This 

finding has major implications in crop systems, where ‘alert’ or disease-resistant offspring can be 

produced by deliberately exposing parent plants to diseases or a priming treatment. Furthermore, 

genetic engineering has allowed for targeted manipulations of genes of the SAR pathway to 

enhance resistance to pests and pathogens. Transgenic crop plants either over-expressing or 

constitutively expressing NPR1, exhibit enhanced resistance to a variety of pathogens in tomato 

and cotton and also in monocot crops like rice and wheat (Lin et al., 2004; Chern et al., 2005; 

Makandar et al., 2006; Parkhi et al., 2010). Additionally, the conclusive identification of the 

SAR signal molecule(s) has widespread implications in agriculture.  

 

1.2 Plant Oxylipins  

A large body of research implies an important role for oxidized lipids, more commonly 

known as oxylipins, not only in plant development but also in defense against various pests and 

pathogens (Blée, 2002; Howe and Schilmiller, 2002; Andreou et al., 2009; Mosblech et al., 2009, 
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2010). In plants, oxylipins play diverse roles. They are not only thought to stimulate signals 

resulting in the mounting of plant defenses, but also have antimicrobial properties, provide 

building units to generate physical barriers by inducing lignification (Kishimoto et al., 2006) 

against pathogen invasion, regulate plant cell death and are also involved in senescence by 

inducing rapid chlorophyll breakdown and plastid protein turnover (Reinbothe et al., 2009). In 

addition, Jasmonic acid (JA), one of the best studied oxylipins is a phytohormone (La Camera et 

al., 2004; Shah, 2005).  

Plant oxylipins are a diverse class of lipid metabolites that are derived from the initial 

oxidation of polyunsaturated fatty acids. The first step in the synthesis of oxylipins involves the 

formation of fatty acid hydroperoxides either by autooxidation, or by the action of enzymes like 

lipoxygenases (LOXs) and α-dioxygenases (α-DOX) (Feussner and Wasternack, 2002; Mosblech 

et al., 2009) (Figure 1.1). Further modifications of the fatty acid hydroperoxides is catalyzed by 

other enzymatic activities, including those initiated by allene oxides synthase (AOS), divinyl 

ether synthase (DES), epoxy alcohol synthase (EAS), reductase, LOXs and hydroperoxide lyase 

(HPL), resulting in a range of biologically active compounds. These include fatty acid 

hydroperoxides, hydroxy-, oxo-, or keto-fatty acids, divinyl ethers, volatile aldehydes, oxo-acids 

and the plant hormone, jasmonic acid  (Figure 1.1) (Blée, 2002; Feussner and Wasternack, 2002; 

Mosblech et al., 2009). The enzymes involved in the synthesis of oxylipins are diverse and the 

pathway results in a vast array of compounds with varied physiological properties. In mammals, 

the arachidonic acid cascade results in oxylipins which play a major role in inflammatory 

processes and in stress response to infections and allergies (Blée, 2002). The occurrence and 

formation of oxylipins  not only in plants and mammals but also in fungi, algae and bacteria is 
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leading to a substantial increase in our understanding of the role of oxylipins in cellular 

development and stress responses (Andreou et al., 2009).  
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Figure 1. 1 Major pathways of oxylipin biosynthesis in plants from linoleic (18:2) or linolenic 
acid (18:3). LOX, Lipoxygenase; α-DOX, α-dioxygenase; DES, divinyl ether synthase; AOS, 
Allene oxide synthase; AOC, Allene oxide cyclase EPS, Epoxy alcohol synthase; HPL, 
Hydroperoxide lyase; FAs, Fatty acids. 
 

1.2.1 Lipoxygenases 

A large body of evidence implies a crucial physiological role for jasmonic acid and its 
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