

Aminoacidi

- Gli α -aminoacidi (AA) sono molecole che presentano almeno due gruppi funzionali,
 - il gruppo -COOH e
 - il gruppo -NH₂
- Legati al carbonio α

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

- 3

Aminoacidi

- Gli AA differiscono tra loro per il gruppo R
- I mammiferi utilizzano 20 AA diversi il cui gruppo R ha diverse proprietà polari e/o acidobase:
 - R alifatico (sei)
- R apolare (otto)
- R aromatico (tre)
- R neutro polare (cinque)
- R idrossilato (due)
- R ionizzabile (sette)
- R contenente zolfo (due)
- R acido e derivati (quattro)
- R basico (tre)

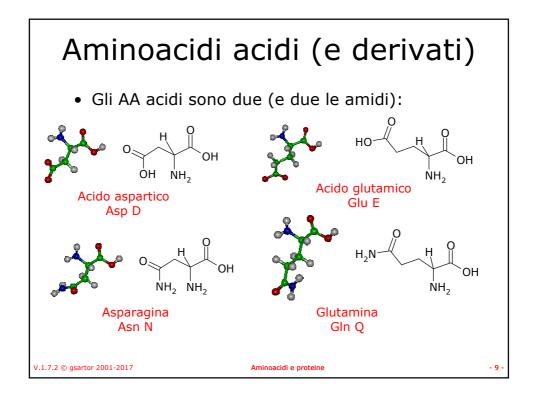
V.1.7.2 © gsartor 2001-2017

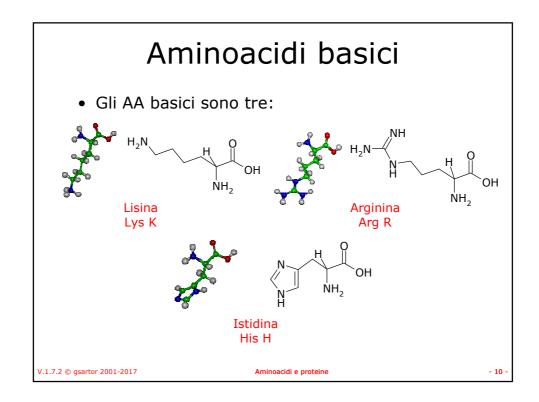
Aminoacidi e proteine

Aminoacidi idrossilati

• Gli AA idrossilati sono due:

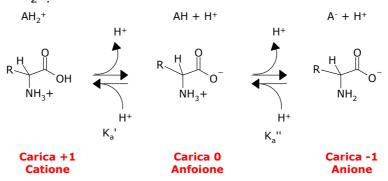
V.1.7.2 © gsartor 2001-2017


Aminoacidi e proteine


Aminoacidi contenenti zolfo

• Gli AA contenenti zolfo sono due:

V.1.7.2 © gsartor 2001-2017


Aminoacidi e protein

Proprietà acido-base degli AA

 La presenza dei due gruppi funzionali –COOH e –NH₃+ rende gli AA simili, nel loro comportamento acido-base, ad acidi biprotici AH₂+

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

- 11

Proprietà acido-base degli AA 14 H2NCH2CO2-12 H₃NCH₂CO₂H 10 H₃NCH₂CO₂-HaNCHaCOapH=6.06 pH 6 H₃ÑСН₂СО₂-4 $pK_{a1}=2.35$ H₃NCH₂CO₂H 2 H₃NCH₂CO₂-0 1.0 2.0 Mole di OH^{*} per mole di AA V.1.7.2 © gsartor 2001-2017 Aminoacidi e proteine - 12

Proprietà acido-base degli AA

 Si definisce pI (punto isoelettrico) il valore di pH al quale l'AA ha carica netta 0, nel caso di un AA con catena laterale neutra è dato da:

$$pI = \frac{1}{2} (pK_{a'(\alpha-COOH)} + pK_{a''(\alpha-NH_3^+)})$$

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

- 13

Proprietà acido-base degli AA acidi

 In presenza un gruppo acido oltre ai due gruppi funzionali –COOH e –NH₃⁺ gli AA si comportano come acidi triprotici AH₃⁺.

V.1.7.2 © gsartor 2001-2017

Aminoacidi e protein

Proprietà acido-base degli AA acidi

• Il pI di un AA acido è dato dalla media dei due valori minori di pK_a:

$$pI = \frac{1}{2} (pK_{a'(\alpha-COOH)} + pK_{a''(R-COOH)})$$

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

- 15

Proprietà acido-base degli AA basici

 In presenza un gruppo basico oltre ai due gruppi funzionali –COOH e –NH₃+ gli AA si comportano come acidi triprotici AH₃++.

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

Proprietà acido-base degli AA basici

 Mentre il di un AA basico è dato dalla media dei due valori maggiori di pK_a:

$$pI = \frac{1}{2} (pK_{a''(\alpha - NH_{3}^{+})} + pK_{a'''(\varepsilon - NH_{3}^{+})})$$

V.1.7.2 © gsartor 2001-2017

Aminoacidi e protein

- 17

Proprietà acido-base degli AA apolari

AA	pK _a ′	pK _a ''	pI
Gly	2.3	9.6	6.0
Ala	2.3	9.7	6.0
Val	2.3	9.6	6.0
Leu	2.4	9.6	6.0
Ile	2.4	9.7	6.1
Pro	2.0	10.6	6.3
Phe	1.8	9.1	5.5
Met	2.3	9.2	5.8
Ser	2.2	9.2	5.7
Thr	2.6	10.4	6.5
Trp	2.4	9.4	5.9

V.1.7.2 © gsartor 2001-2017

Aminoacidi e protein

Proprietà acido-base degli AA polari

AA	pK _a ′	pK _a "	pK _a R	pΙ
Cys	1.7	10.8	8.3	5.0
Tyr	2.2	9.1	10.1	5.7
Asp	2.1	9.8	3.9	3.0
Asn	2.0	8.8	_	5.4
Glu	2.2	9.7	4.3	3.2
Gln	2.0	9.1	-	5.7
His	1.8	9.2	6.0	7.6
Lys	2.2	9.0	10.5	9.8
Arg	2.2	9.0	12.5	10.8

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

- 19

Proprietà acido-base degli AA polari

AA	pK _a ′	pK _a "	pK _a R	pI
Cys	1.7	10.8	8.3	5.0
Tyr	2.2	9.1	10.1	5.7
Asp	2.1	9.8	3.9	3.0
Asn	2.0	8.8	_	5.4
Glu	2.2	9.7	4.3	3.2
Gln	2.0	9.1	_	5.7
His	1.8	9.2	6.0	7.6
Lys	2.2	9.0	10.5	9.8
Arg	2.2	9.0	12.5	10.8

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

Istidina His H

• His presenta un valore di pI vicino al pH fisiologico a causa della stabilizzazione per risonanza del catione imidazolico.

$$PK_{a} = 6.0$$

$$NH_{3} + NH_{3} + NH_{$$

V.1.7.2 © gsartor 2001-2017

Aminoacidi e protein

- 21

Aminoacidi modificati

- Modificazioni post-traduzionali
 - 4-idrossiprolina

- O-fosfoserina

- O-fosfotirosina

- N-Acetillisina

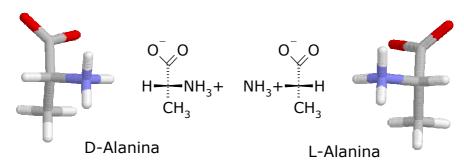
V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

Isomeria ottica

• Tutti gli AA (esclusa la glicina) possiedono almeno un atomo di carbonio asimmetrico, il C_{α} .

$$C_{\alpha}$$
 R
 H
 O
 OH
 OH

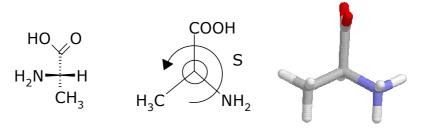

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

- 23

Isomeria ottica

• Quindi possono esistere due isomeri D ed L


• In natura gli AA sono in forma L.

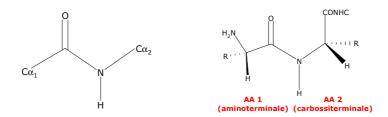
V.1.7.2 © gsartor 2001-2017

Aminoacidi e protein

Isomeria ottica

 Per quanto riguarda la configurazione assoluta degli L-AA 18 sono S e uno (la cisteina) R.

V.1.7.2 © gsartor 2001-2017

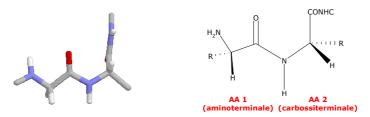

Aminoacidi e protein

Isomeria ottica

 Per quanto riguarda la configurazione assoluta degli L-AA 18 sono S e uno (la cisteina) R.

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteir


 Gli AA si legano tra loro con un legame tra il gruppo carbossilico di un AA e il gruppo aminico dell'AA successivo.

V.1.7.2 © gsartor 2001-2017

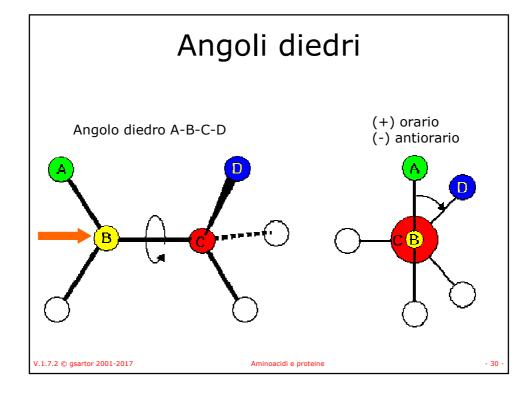
Aminoacidi e proteine

- 27

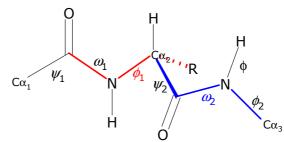
Il legame peptidico

 Gli AA si legano tra loro con un legame tra il gruppo carbossilico di un AA e il gruppo aminico dell'AA successivo.

V.1.7.2 © gsartor 2001-2017


Aminoacidi e proteine

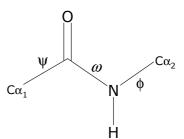
• Il legame peptidico ha caratteristiche elettroniche che ne regolano la geometria.


$$C\alpha_1$$
 $C\alpha_2$
 $C\alpha_1$
 $C\alpha_2$
 $C\alpha_2$
 $C\alpha_1$
 $C\alpha_2$
 $C\alpha_2$
 $C\alpha_1$
 $C\alpha_2$
 $C\alpha_2$
 $C\alpha_2$
 $C\alpha_1$
 $C\alpha_2$
 $C\alpha_2$
 $C\alpha_2$
 $C\alpha_2$
 $C\alpha_3$
 $C\alpha_4$
 $C\alpha_5$
 $C\alpha_5$

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

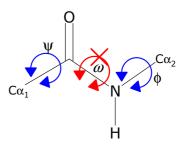
Angoli diedri


- φ (phi) C'-N-Cα-C'
- Ψ (psi) N-Cα-C'-N
- *ω* (omega) Cα-C'-N-Cα

C' corrisponde al C=0

V.1.7.2 © gsartor 2001-2017

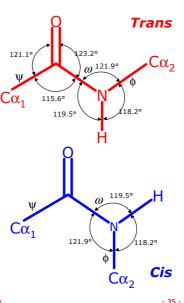
Il legame peptidico


- A causa della distribuzione degli elettroni il legame peptidico ha specifiche proprietà geometriche:
 - I legami hanno lunghezze:
 - C_α-C 1.52Å
 - C=O 1.23Å
 - C-N 1.33Å
 - N-C_α 1.45Å
 - Il legame ω generalmente trans (180°)

V.1.7.2 © gsartor 2001-2017

Aminoacidi e protein

- A causa della distribuzione degli elettroni il legame peptidico ha specifiche proprietà geometriche:
 - Non vi è libera rotazione intorno al legame C-N
 - Vi è libera rotazione solo intorno ai legami ϕ e ψ .

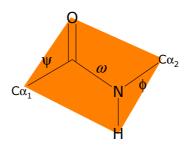

V.1.7.2 © gsartor 2001-2017

Aminoacidi e protein

- 33

Il legame peptidico 1.52 Å 1.23 Å 1.23° 1.22° 1.45Å 1.22° V.1.7.2 © gsartor 2001-2017 Aminoacidi e proteine - 34 -

- L'angolo ω tende ad essere planare
 Trans (180°) o Cis (0°) a causa della delocalizzazione degli elettroni π.
- Trans è molto più favorito di Cis:
 - Solo 116 su 32539 angoli ω in 154 strutture (0.36%) sono *Cis* (*Stewart et al. 1990*).
 - Alcune coppie di AA sono però più spesso *Cis*: Tyr-Pro (25%), Ser-Pro (11%), X-Pro (6.5%)
- Questo permette la flessibilità dello scheletro della proteina attraverso gli angoli φ e ψ con la limitazione dell'ingombro sterico.

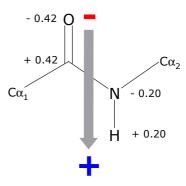

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

Il legame peptidico

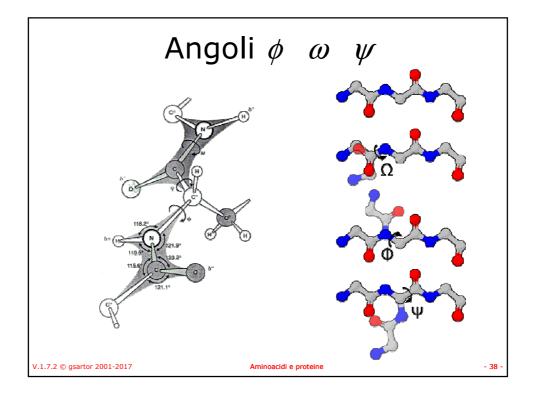
 A causa della distribuzione degli elettroni il legame peptidico ha specifiche proprietà geometriche:

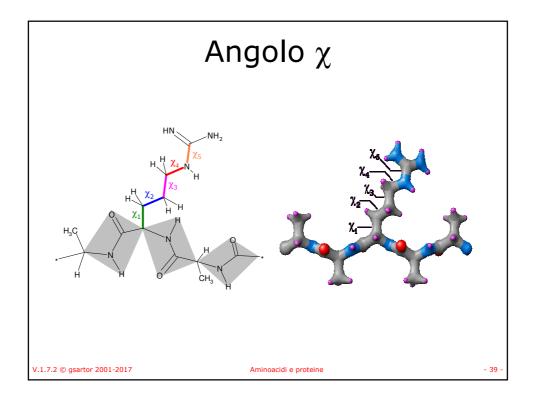
 È planare.



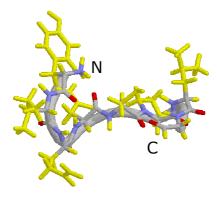
V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine


 A causa della distribuzione degli elettroni il legame peptidico ha specifiche proprietà elettriche:


 È dipolare.

V.1.7.2 © gsartor 2001-2017


Aminoacidi e proteine

Peptidi e proteine

- I peptidi e le proteine sono polimeri di AA legati tra loro da un legame peptidico.
- Fino a 20 AA il polimero è un peptide.

V.1.7.2 © gsartor 2001-2017

Aminoacidi e protein

Struttura primaria

 Si definisce la struttura primaria di un peptide o di una proteina la sequenza a partire dall'AA aminoterminale (il primo) all'AA carbossiterminale (l'ultimo).

$$^{+}_{3}$$
HN-Gly-Ala-Ser-Thr-Ala-Ala-Lys-Trp-Lys-COO $^{\scriptscriptstyle{-}}$

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

Legame idrogeno

$X-H \cdot \cdot \cdot Y$

X donatore; Y accettore

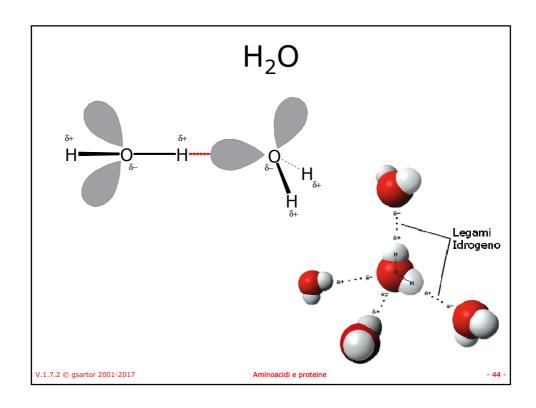
Distanze:

X-H 1.1Å (110 pm)

H···Y 1.6-2.0Å (160-200 pm)

in H₂O 1.97Å (197 pm)

Angolo:


da 46° (H₂O-HF) a 180° (HCN-HF)

Energia:

da 1–2 kJ \cdot mol $^{-1}$ a 161.5 kJ \cdot mol $^{-1}$ (in HF $_2$ $^{-}$); 21 kJ \cdot mol $^{-1}$ (in H $_2$ O)

V.1.7.2 © gsartor 2001-2017

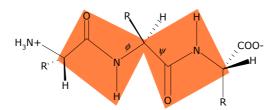
Aminoacidi e proteine

Struttura secondaria

- La struttura II delle proteine dipende dalla formazione di legami idrogeno tra atomi di ossigeno di un legame peptidico e atomi di azoto di un altro legame peptidico.
- La formazione dei legami H tra atomi avviene a causa:
 - della possibilità di rotazione intorno ai legami che coinvolgono il $C\alpha$
 - della distribuzione delle cariche nel legame peptidico che rende l'atomo di ossigeno carbonilico con carica parziale negativa e l'atomo di idrogeno con parziale carica positiva, ciò rende la condivisione di un atomo di idrogeno tra l'ossigeno e l'azoto.

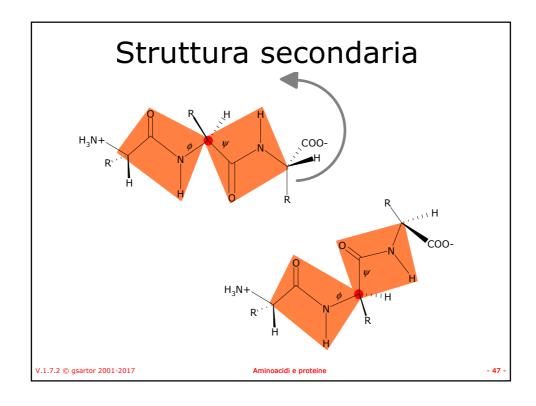
$$C\alpha_{2}$$
...

 $C\alpha_{n+1}$
 $C\alpha_{n+1}$
 $C\alpha_{n+1}$


V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

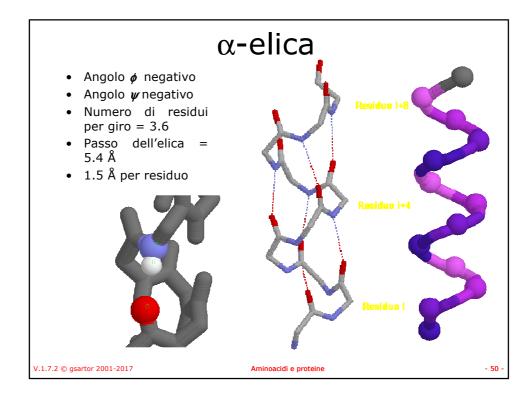
- 45


Struttura secondaria

• La formazione dei legami H tra atomi avviene a causa della possibilità di rotazione intorno al legame tra il $C\alpha$ e l'atomo di azoto che lo precede (**angolo** ϕ) ed intorno ai legami tra il $C\alpha$ e l'atomo di carbonio (carbonilico) che lo segue (**angolo** ψ).

V.1.7.2 © gsartor 2001-2017

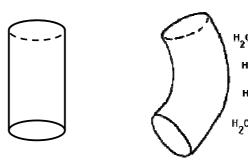
Aminoacidi e protein



Struttura secondaria

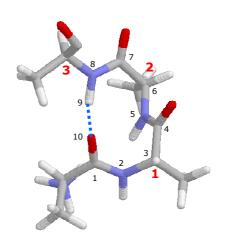
- Poiché non tutte gli angoli di rotazione sono possibili a causa degli ingombri sterici, esistono dei minimi di energia conformazionale che corrispondono a particolari coppie di angoli φ e ψ ed alla formazione di legami H con, in alcuni casi, precise periodicità:
- Esistono diverse strutture II:
 - Eliche
 - Strutture β
 - Ripiegamenti (Turns)

V.1.7.2 © gsartor 2001-2017


Aminoacidi e proteine

Distorsioni α -elica

- Contatti con altre strutture secondarie;
- Distribuzione del solvente asimmetrica;

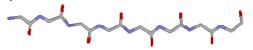

• Presenza nella sequenza di Pro

V.1.7.2 © gsartor 2001-2017

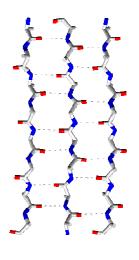
Aminoacidi e proteine

Elica 3₁₀

- Tre aminoacidi per giro.
- Il legame H forma un ciclo di dieci atomi.

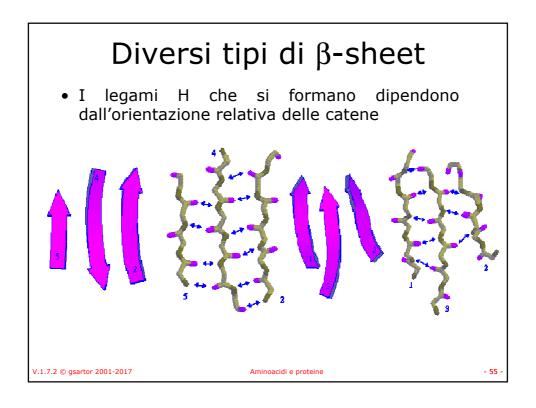

V.1.7.2 © gsartor 2001-2017

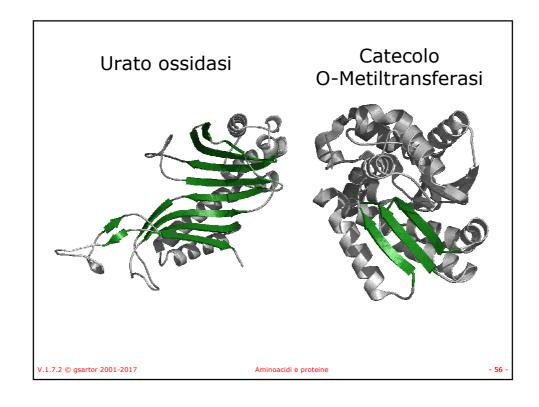
Aminoacidi e proteine

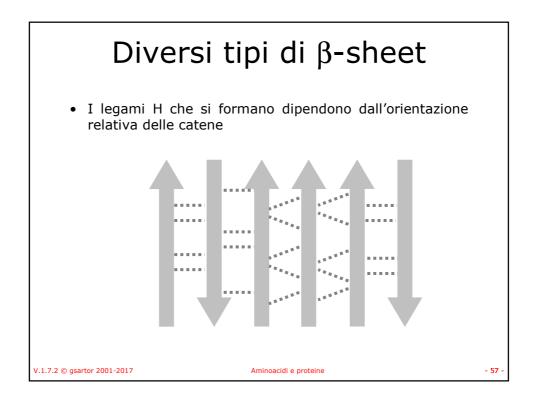

- 53

β -sheet e β -strand

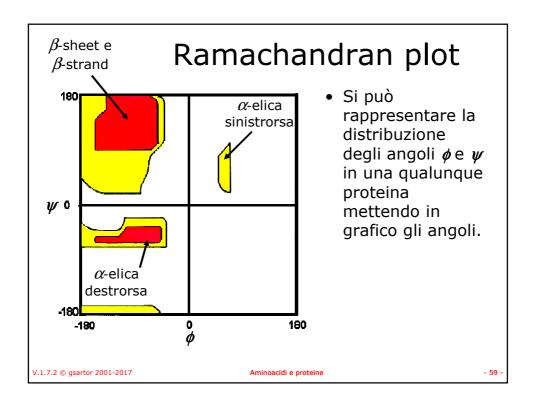
• L'angolo ϕ è negativo e ψ è positivo.

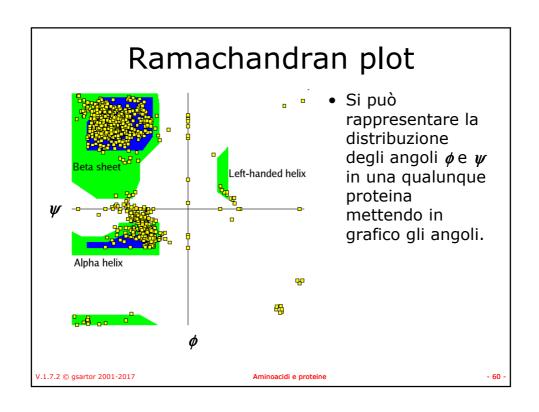


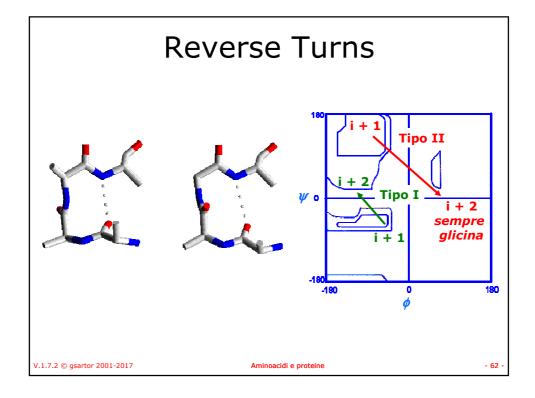

 Le strutture β sono caratterizzate dalla formazione di legami idrogeno tra catene adiacenti e non necessariamente orientate nello stesso verso.



V.1.7.2 © gsartor 2001-2017


Aminoacidi e proteine





Turns

- I turns sono strutture composte di pochi AA,
- In genere fungono da collegamento tra eliche o strands.
 - Reverse Turns
 - β -hairpin Turns

V.1.7.2 © gsartor 2001-2017

Aminoacidi e protein

β -hairpin Turns • Un tipo di turn che interviene tra due β -strand antiparallele. β -hairpin

Aminoacidi e proteine

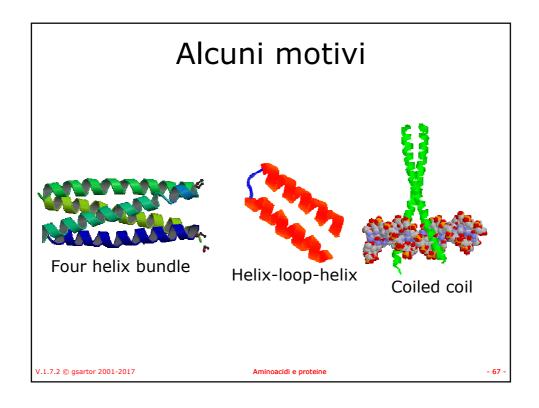
V.1.7.2 © gsartor 2001-2017

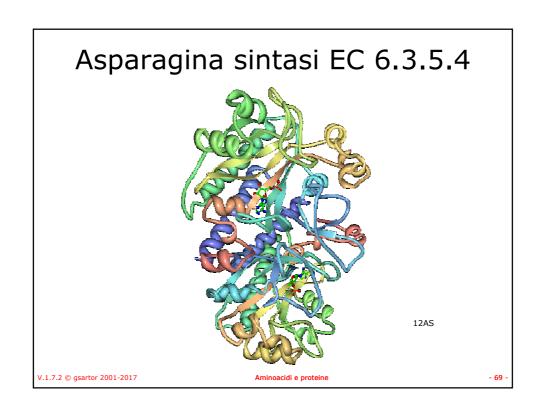
Struttura terziaria

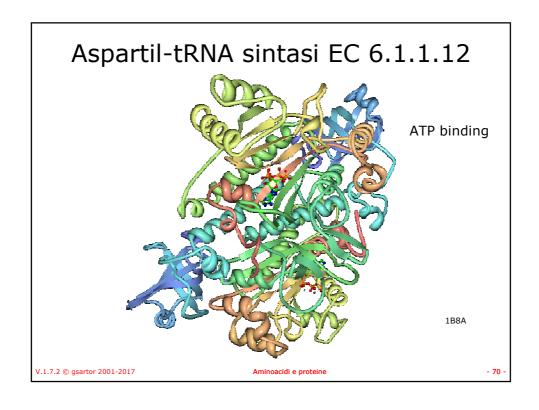
Superstruttura secondaria

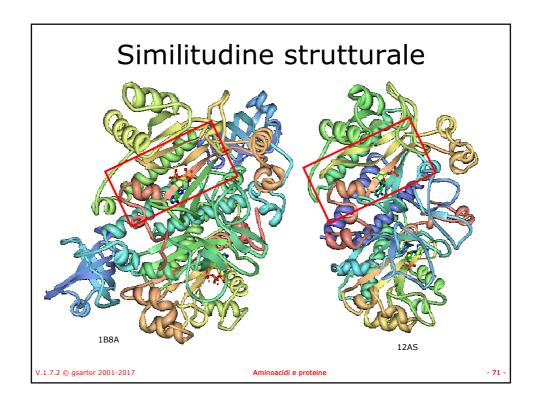
V.1.7.2 © gsartor 2001-2017

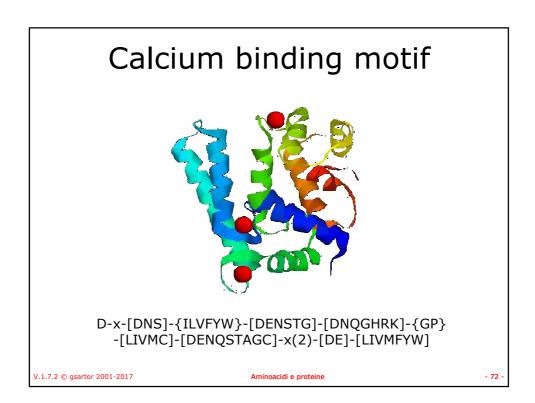
Aminoacidi e protein

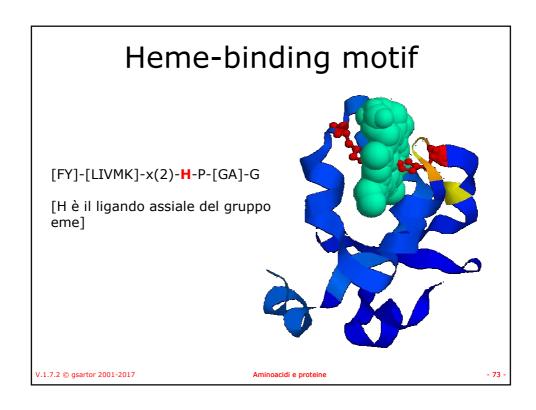

- 65

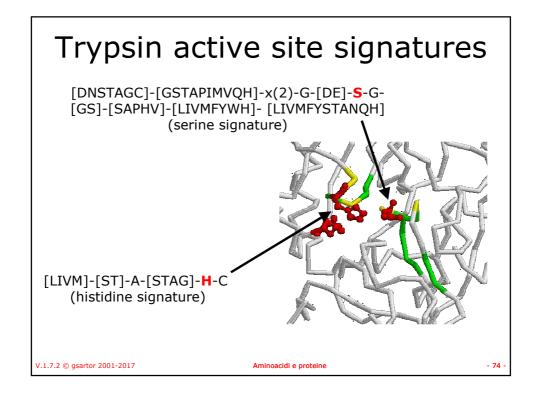

Motivi (Motifs)


- Si dicono motivi (motifs) semplici combinazioni di elementi di struttura secondaria arrangiati geometricamente;
- Spesso, ma non sempre, ai motivi sono associate particolari funzioni o attività


V.1.7.2 © gsartor 2001-2017


Aminoacidi e protein





Struttura terziaria

- Ripiegamento (Folding) che porta alla formazione di strutture tridimensionali.
- I legami che sono coinvolti nella stabilizzazione della struttura III sono legami tra catene laterali
 - Legami H
 - Van del Vaals
 - Idrofobici
 - Coppia ionica
 - -S-S-
 - ...

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

- 75

Legami H

• È un legame H tra le catene laterali di due aminoacidi vicini...

• ... o con il mezzo

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

Van der Walls

• È un legame elettrostatico tra le catene laterali di due aminoacidi vicini.

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

- 77

Interazione idrofobica

• È un legame elettrostatico tra le catene laterali di due aminoacidi vicini.

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

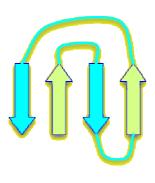
Coppia ionica

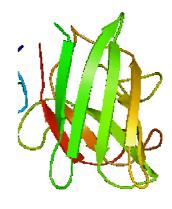
• È un legame elettrostatico tra le catene laterali di due aminoacidi carichi vicini.

V.1.7.2 © gsartor 2001-2017

Aminoacidi e protein

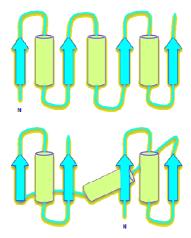
- 79


Ponti disolfuro


• È un legame tra due cisteine (anche non adiacenti) che prevede l'ossidazione del gruppo SH.

V.1.7.2 © gsartor 2001-2017

Aminoacidi e protein

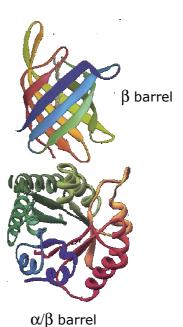

Topologia a chiave greca nella superossido dismutasi (SOD)

V.1.7.2 © gsartor 2001-2017

Aminoacidi e protein

- 81

Stessi elementi diversa topologia



V.1.7.2 © gsartor 2001-2017

Aminoacidi e protein

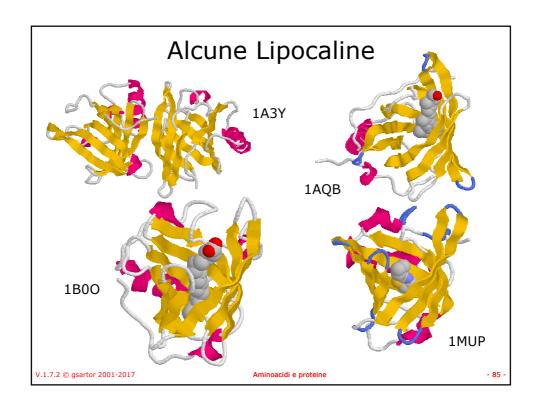
Domini

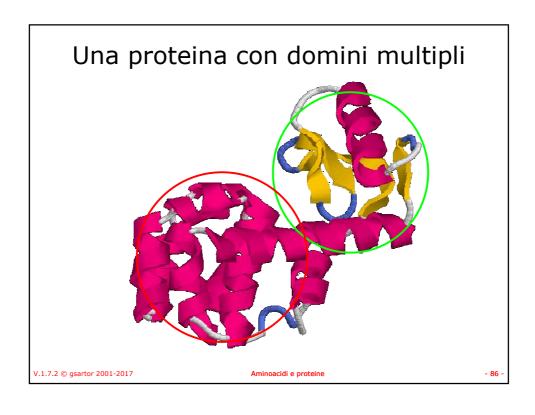
- Unità fondamentale del folding
- È la combinazione di diversi elementi di struttura secondaria e/o motivi, non necessariamente contigui, che sono impaccati in una struttura globulare.
- Un dominio può ripiegarsi indipendentemente in una struttura tridimensionale stabile con una specifica funzionalità.

V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine

- 83

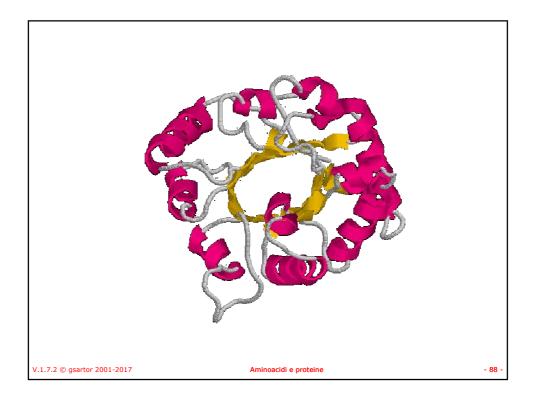

β barrel


• LIPOCALINE

- Odorant Binding Protein From Nasal Mucosa Of Pig 1A3Y
- Retinol-Binding Protein (Rbp) From Pig Plasma 1AQB
- Bovine β-Lactoglobulin 1B0O
- Pheromone binding to rodent urinary protein 1MUP

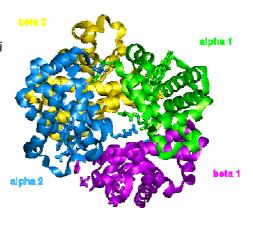
V.1.7.2 © gsartor 2001-2017

Aminoacidi e proteine



Cores delle proteine

- Il "core" di una proteina e il motivo comune, strutturalmente conservato che distingue una classe di proteine.
- Il "core" è definito come una regione stutturale comune ad un gruppo di sequenze.
- Proteine con simili funzioni hanno simili "cores".
- Le regioni periferiche (fuori dal "core") possono avere struttura anche molto diversa.


V.1.7.2 © gsartor 2001-2017

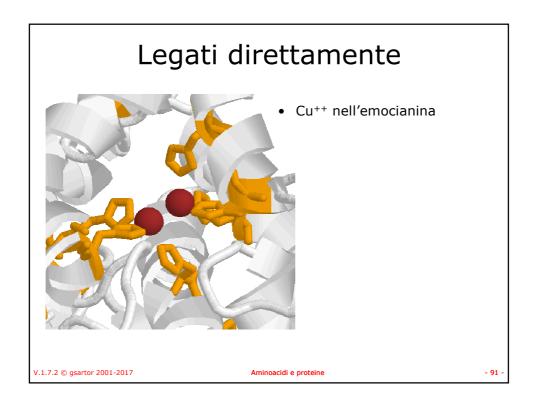
Aminoacidi e proteine

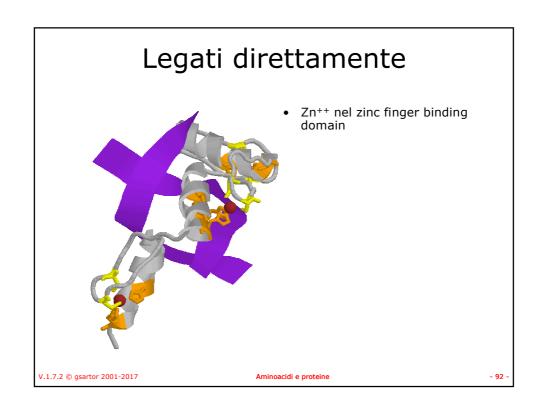
Struttura quaternaria

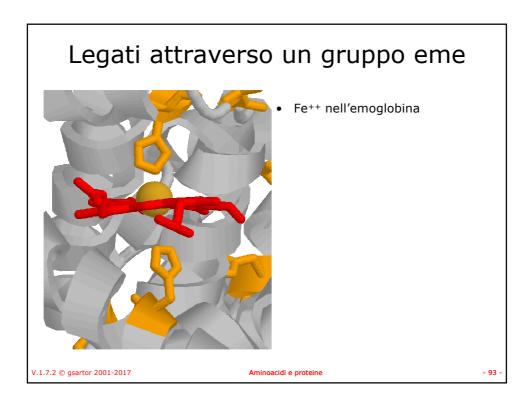
- Proteine formate da più catene polipeptidiche
- Stechiometria definita
- Legami ionici ed idrofobici
- Gli oligomeri sono più stabili delle subunità dissociate
- Siti attivi si possono formare tra le catene
- Il legame di ligandi può cambiare la struttura.

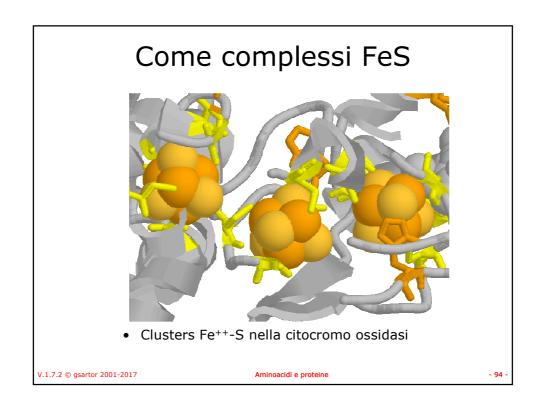
V.1.7.2 © gsartor 2001-2017

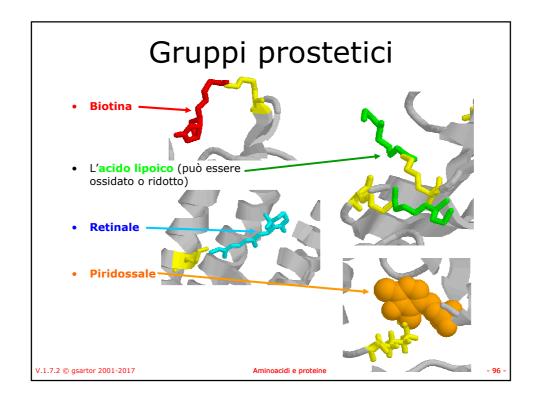
Aminoacidi e proteine


- 89 -


Gruppi prostetici


- Metalli
 - Legati direttamente (Fe++, Fe+++, Zn++, Ca++, Co++, Cu++, Mg++, Mn++ ...)
 - Attraverso un gruppo eme (Fe⁺⁺, Fe⁺⁺⁺, Mg⁺⁺...)
 - Come complessi con lo zolfo (Fe⁺⁺, Fe⁺⁺⁺)
- Biotina
- Acido lipoico
- Retinale
- Piridossale
- ...


V.1.7.2 © gsartor 2001-2017


Aminoacidi e proteine

Crediti e autorizzazioni all'utilizzo

- Questo materiale è stato assemblato da informazioni raccolte dai seguenti testi di Biochimica:
 - CHAMPE Pamela , HARVEY Richard , FERRIER Denise R. LE BASI DELLA BIOCHIMICA [ISBN 978-8808-17030-9] Zanichelli

 - NELSON David L. , COX Michael M. I PRINCIPI DI BIOCHIMICA DI LEHNINGER Zanichelli GARRETT Reginald H., GRISHAM Charles M. BIOCHIMICA con aspetti molecolari della Biologia cellulare Zanichelli
 - VOET Donald , VOET Judith G , PRATT Charlotte W $\,$ FONDAMENTI DI BIOCHIMICA [ISBN 978-8808-06879-8] Zanichelli
- E dalla consultazione di svariate risorse in rete, tra le quali:

 Kegg: Kyoto Encyclopedia of Genes and Genomes http://www.genome.ad.jp/kegg/
 Brenda: http://www.brenda.uni-koeln.de/

 - Protein Data Bank: http://www.rcsb.org/pdb/

Rensselaer Polytechnic Institute: http://www.rpi.edu/dept/bcbp/molbiochem/MBWeb/mb1/MB1index.html

• Il materiale è stato inoltre rivisto e corretto dalla **Prof. Giancarla Orlandini** dell'Università di Parma alla quale va il mio sentito ringraziamento.

Questo ed altro materiale può essere reperito a partire da: http://www.gsartor.org/pro

Il materiale di questa presentazione è di libero uso per didattica e ricerca e può essere usato senza limitazione, purché venga riconosciuto l'autore usando questa frase:
 Materiale ottenuto dal Prof. Giorgio Sartor

Università di Bologna

Giorgio Sartor Ufficiale: giorgio.sartor@unibo.it
Personale: giorgio.sartor@gmail.com

Aggiornato il 01/03/2017 11:00:56