

Affinity tags		
 Gli affinity tags sono si ottengono attraverso la preparazione di proteine ricombinanti. Alla proteina di interesse è legato un tag che presenta affinità con un ligando: 		
 TAG GST (glutatione-S-transferasi) MBP (malthose binding protein) biotina Poli-His 	 LIGANDO Glutatione Maltosio Avidina Nichel, Zinco 	
 Le proteine contenenti affinity tags sono poi isolati per cromatografia di affinità con i ligandi legati alla colonna. Le proteine isolate possono poi venire primate degli affinity tag attraverso proteolisi specifica. 		
gs © 2001-2005 ver 2.0 Tecniche a	nalitiche	46

Struttura del gel		
 Il gel consiste in due gel a differenti concentrazione di acrilamide e a diverso pH Running gel: 		
 Questo gel viene fatto per primo e si trova nella parte inferiore, attraverso questo gel avviene la separazione delle proteine in base al peso molecolare. 		
 La concentrazione di acrilamide definisce le proprietà separative del gel. 		
 Il pH è basico (8.3) per avere le proteine nella forma anionica affinché migrino verso l'anodo. 		
Stacking gel:		
 Ha una concentrazione di acrilamide minore (4.5%) ed è a pH 6.8 in modo da permettere l'entrata simultanea delle proteine nel running gel appena viene applicato il campo elettrico. 		
 Viene polimerizzato in presenza di un pettine per creare i pozzetti. 		
gs © 2001-2005 ver 2.0 Tecniche analitiche	64	

Interazione tra energia e materia							
λ (nm)	v (Hz)	Regione dello spettro	Interazioni (Spettroscopia)				
10 ⁶ - 10 ¹⁰	3·10 ¹¹ - 3·10 ⁷	Radio	Spin nucleare, spin elettronico (NMR – EPR)				
10 ³ - 10 ⁵	3·10 ¹⁴ - 3·10 ¹²	Radiazioni InfraRosse	Vibrazioni, rotazioni (IR)				
4·10 ² - 8·10 ² (400-800)	7.5·10 ¹⁴ - 3·10 ¹⁴	Luce Visibile	Transizioni elettroniche (Spettroscopie ottiche)				
2·10 ² - 3·10 ² (200-300)	1.5·10 ¹⁵ - 1·10 ¹⁵	Luce UltraVioletta					
10 ⁻³ - 10 ⁰	3·10 ²⁰ - 3·10 ¹⁷	Raggi X	Gusci interni (Spettroscopie X)				
D 2001-2005 ver 2.0		Tecniche analitiche					

Molecola	λ _{ex} - λ _{em} (nm)	Intensità	Molecola	λ _{ex} - λ _{em} (nm)	Intensità
	270-310	10	OH	285-265	18
CH3	270-320	17		310-400	10
Cl	275-345	7	NH ₂	310-405	20
I I	_	0	NH ₃ +	-	0

